SCEJ

28th SCEJ Students Meeting (online, 2026)

Hall program

The technical program on this page is still provisional. Confirm the final program later.
Japanese page

Hall A

Most recent update: 2026-01-19 09:17:27
TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Fundamental properties, ¿ä»»¡¦Í½Â¬
9:30 9:42 A01Does the thermal conductivity change by a kind of the meat?
(Ikuno) *Kimura K., *Kitano S., *Nakano K., *Kuroiwa S., Yoshida S.
meat
heat
conductivity
2-g151
9:42 9:54 A02Relationship between freezing point depression and molar concentration in highly concentrated aqueous solutions
(Masuda H.S) *Ueda K., *Gobara S., *Hirano K., Fukui M.
freezing point depression
highly concentrated solution
glucose aqueous solution
1-e84
9:54 10:06 A03The impact of geographical conditions and human activities on ant ecology
(Hyogo H.S) *Akagawa Megumi, *Katayama Naoya, *Hosooka Mone, *Yamasaki Mahana, *Watanabe Shotaro, Shiga Toshiki
Ant
Ecology
Geographical situation
7-g22
10:06 10:18 A04The effect of how to carry a bag on a physical and brain performance
(Hyogo H.S) *Akashi Naoya, *Kobayashi Kazumichi, *Tada Tomoka, *Fujinaka Azuki, *Hotta Ikumi, Shiga Toshiki
Athletic ability
Muscle activity
Brain activity
9-f19
10:18 10:30 A05How to create rainbow colors in a test tube by the universal indicator
(Kitamifujikoukou) *Hirabayashi K, Yamaki S, Uto Y.
acid-base indicator
hydrogen ion exponent
rainbow-collar
5-i164
10:30 10:42 A06Quantitative analysis of the solubility of sucrose in aqueous urea solutions
(Tachikawa H.S.) *Hatakeyama Koki, *Matsumoto Kakeru, Takano Shunsuke
solubility
urea
sucrose
1-a100
10:42 10:50 Break
Fundamental properties, ¿ä»»¡¦Í½Â¬
10:50 11:02 A08Improving Accuracy of Machine Learning Models for Predicting the Properties of Polymer Aerogels Using Transfer Learning
(Kyoto U.) *Yanagi Kiyoshi, Yoshikawa Itsuki, Tonomura Osamu, Sotowa Ken-Ichiro
Polyimide Aerogel
Transfer Learning
Materials Informatics
6-g161
11:02 11:14 A09Doubt a textbook!Is the iodoform reaction caused?
(Ikuno) *Katayama D., *Nakazawa K., *Fujiwara S., *Iwamoto K., Yoshida S.
iodoform
chemical structure
iodine
1-b96
11:14 11:26 A10Exploring the possibility of Flame Color reaction
(Tachikawa H.S.) *Simizu syuji, *Imai Tsubasa, *Nakagawa Koei, Yoshida Takashi
Flame color reaction
wavelength
color change
1-a138
11:26 11:38 A11Development of a property estimation method for ternary systems using gradient-constrained machine learning
(Shizuoka U.) *Hatoyama Atsushi, Murakami Yuya
PINNs
mixture
machine learning
1-a208
11:38 11:50 A12Effects of changing conditions on the iodine clock reaction
(Tamagawa Academy) *Sasaki Yui, Kinouchi Mikiko
chemical reaction
clock reaction
Iodine
5-i141
11:50 12:02 A13Study on Creating Rainbow Colors in a Test Tube Using Natural Pigments
(Kitamifujikoukou) *Hayashi Setuka, Tuji Ruki, Uto Y.
Natural Pigments
Rainbow Colors
Red cabbage
5-i168
12:02 12:30 Lunch break
Special Symposium -Talks by Young Researchers and Engineers-
12:30 12:42 Plenary lecture
12:42 12:54 A17Chemical Engineering at the Forefront of Process Development
(Kao Corporation) Sumitani Y.

17-b301
12:54 13:06 Plenary lecture
13:06 13:14 Break
Special Symposium -Introduction to Universities and Graduate Schools-
13:14 13:26 Plenary lecture
14:26 14:34 Break
Fundamental properties, ¿ä»»¡¦Í½Â¬
14:34 14:46 A27Optimization of a particle detection algorithm in a flow field for softsensor development
(Shizuoka U.) *Ibuki Ryoto, Nihei Kosuke, Murakami Yuya
softsensor
particle tracking
machine learning
6-f210
14:46 14:58 A28Driving Simulation of Electric Vehicles Using MATLAB/Simulink
(Toyohashi Tech) *Hori Kyota, Hamada Shu, Xiao Yan, Watanabe Takato, Watanabe Takahiro, Takikawa Hirofumi, Tojo Tomohiro
MATLAB/Simulink
Electric Vehicles
Driving Simulation
6-c34
14:58 15:10 A29Dynamic Prediction of Marine Microorganisms Using a 3D Simulation Incorporating Predation Processes for Environmental Analysis of Suruga Bay
(Shizuoka U.) *Shinada Mana, Yokojima Satoshi, Takeda Kazuhiro
3D simulation
microorganism
dynamics prediction
6-g30
15:10 15:22 A30Development of a property estimation method using descriptors for multicomponent mixtures
(Shizuoka U.) *Ikeda Keisuke, Hatoyama Atsushi, Murakami Yuya
multi-component mixture
molecular descriptor
machine learning
1-d214
15:22 15:34 A31DFT Study of the Anomeric Ratio of ¦Á- and ¦Â-D-Glucopyranose in Aqueous Solution
(Ikeda.H.S) *Shimizu Koichi, *Morimoto Iroha, *Abe Hinako, *Takagi Akihiro, *Nakazono Mio, *Nitta Anri, Nishimura Haruka, Onishi Keita
Density Functional Theory
Glucopyranose
Anomeric Ratio
6-e69
15:34 15:46 A32Development of an Alarm Necessity Prediction Model Using HAZOP Data and Large Language Models
(Shizuoka U.) *Kaneshima Yosei, Takeda Kazuhiro
Alarm Classification
HAZOP
LLM
10-c216
15:46 15:58 Break

Technical program
28th SCEJ Students Meeting (online, 2026)

© 2026 The Society of Chemical Engineers, Japan. All rights reserved.
Most recent update: 2026-01-19 09:17:27
For more information contact Organizing Committee, 28th SCEJ Students Meeting (online, 2026)
E-mail: inquiry-stu28www4.scej.org
This page was generated by easp 2.51b; proghtml 2.51a (C)1999-2023 kawase