Japanese page
SCEJ

SCEJ 88th Annual Meeting (Tokyo, 2023)

Program search result : 機械学習 : 13 programs

The preprints(abstracts) are now open (Mar. 1st). These can be viewed by clicking the Paper IDs. The ID/PW sent to the Registered participants in Period I/II and invited persons are required.

Title (J) field includes “機械学習”; 13 programs are found.
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
15:0015:20
J119Machine learning assisted molecular evolution for the selectin of antibody mimetics
(Tohoku U.) *(Reg)Ito Tomoyuki, (AIST) Thuy Duong Nguyen, (AIST/CBBD-OIL/U. Tokyo/RIKEN) Saito Yutaka, (AIST) Kurumida Yoichi, (Tohoku U.) (Reg)Nakazawa Hikaru, (Reg)Kawada Sakiya, (Tohoku U./Tohoku U. ToMMo/Ochanomizu U.) Nishi Hafumi, (U. Tokyo/RIKEN/NIMS MaDIS) Tsuda Koji, (AIST/RIKEN) Kameda Tomoshi, (Tohoku U./RIKEN) (Reg)Umetsu Mitsuo
Antibody mimetics
Phage display
Machine-learning
7-a667
Day 2
9:2010:20
PB225Machine learning application for the directed evolution of antibody fragments
(Tohoku U.) *(Stu)Kawada S., (AIST) Kurumida Y., (Tohoku U.) (Reg)Ito T., (AIST) Nguyen T. D., (Tohoku U.) (Reg)Nakazawa H., (Tohoku U./Ochanomizu U.) Nishi H., (AIST/AIST-Waseda U./U. Tokyo/RIKEN) Saito Y., (AIST/RIKEN) Kameda T., (U. Tokyo/RIKEN/NIMS) Tsuda K., (Tohoku U./RIKEN) (Reg)Umetsu M.
Antibody fragments
Phage display
Machine learning
7-a551
Day 2
9:2010:20
PB237Machine-learning assisted evolution of fungal cellulase
(Tohoku U.) *(Reg)Nakazawa Hikaru, (Reg)Ito Tomoyuki, (Reg)Umetsu Mitsuo, Kataoka Shiro
machine learning
enzyme
biorefinery
7-a710
Day 2
10:2010:40
E205Morphological Classification of Electron Microscopic Images of Carbon Black with Machine Learning Assistance
(Tohoku U.) *(Reg)Matsukawa Yoshiya, Wakimoto Shinji, (Stu)Niioka Shunya, (Reg)Aoki Hideyuki, (Asahi Carbon) (Cor)Era Koki, (Cor)Aoki Takayuki, (Reg)Yamaguchi Togo
Carbon Black
Morphology
Convolutional Neural Network
3-b297
Day 2
10:2011:20
PB246Machine-learning guided mutagenesis for humanization of camel antibody fragment
(Tohoku U.) *(Stu)Takei Ai, (Stu)Kurihara Daichi, (Reg)Ito Tomoyuki, (Reg)Nakazawa Hikaru, (Reg)Umetsu Mitsuo
VHH
Machine-learning
Evolutionary molecular engineering
7-a409
Day 2
11:0011:20
I207[Featured presentation] Prediction of Olefin Metathesis Reactivity Using Machine-Learning Model
(Zeon) *(Reg)Nagaoka Masahiro, (Cor)Taira Kanako
machine-learning
olefin metathesis
catalytic reaction
6-d69
Day 2
14:2015:20
PC230Application of machine learning and physical modeling for detecting hydrogen leakage from hydrogen pipeline
(Yokohama Nat. U.) *(Stu)Suzuki Yuki, Suzuki Tomoya, Nakayama Jo, (NEC) Soma Tomoya, (Yokohama Nat. U.) (Reg)Izato Yuichiro, (Reg)Miyake Atsumi
hydrogen pipeline
leak detection
machine learning
10-e269
Day 2
14:4015:00
G218Machine learning-based multi-objective optimization for two-stage CO2 membrane separation process
(AIST) *(Reg)Hara Nobuo, (Reg)Taniguchi Satoshi, (Reg)Yamaki Takehiro, (Reg)Nguyen Thuy, (Reg)Kataoka Sho
CCUS
Bi-objective optimization
membrane separation
4-a277
Day 3
9:2010:20
PD311Prediction of nanoparticle dispersion by machine learning with Hansen parameters as input
(Tokyo Tech) *(Stu)Shibata Koh, (Reg)Orita Yasuhiko, (Reg)Shimoyama Yusuke
Hansen solubility parameter
nanoparticle dispersion
machine learning
1-b486
Day 3
9:2010:20
PD333Prediction of product composition using machine learning in co-processing of bio-oil and heavy oil in catalytic cracking process
(Shinshu U.) *(Stu)Yasuike Shun, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
bio-oil
co-processing
machine learning
5-a539
Day 3
10:2010:40
H305High-speed computing of powder mixing using machine learning with random motion model
(Osaka Metro. U.) *(Stu)Kishida Naoki, (Reg)Nakamura Hideya, (Reg)Ohsaki Shuji, (Reg)Watano Satoru
Powder mixing
High-speed computing
Machine learning
2-f112
Day 3
10:2011:20
PD346The development of Porous polymer monolith catalyst with the application of machine learning
(Kyushu U.) *(Stu)Syu Sintei, (Reg)Nagao Masanori, (Reg)Miura Yoshiko
Immobilized Catalyst
Monolith
Machine Learning
5-a317
Day 3
14:0514:55
R306[Requested talk] Theory-driven Machiene Learning for Chemical Engineering
(Tokyo U. Sci.) *(Reg)Murakami Yuya, (Reg)Shono Atsushi
Machine learning
Artificial Intelligence
Big data
HQ-21471

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 88th Annual Meeting (Tokyo, 2023)


© 2023 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 88th Annual Meeting (Tokyo 2023) and IChES 2023
E-mail: inquiry-88awww3.scej.org