A$B2q>l(B | |||||
---|---|---|---|---|---|
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c%0%j!<%s | |||||
(9:20$B!A(B10:40)$B!!(B($B:BD9(B $BB?8P(B $B516=(B) | |||||
A302 | $B%P%$%*%G%#!<%<%k$NO"B3@8;:$K$*$1$k%"%k%3!<%k$H?(G^$N1F6A(B | Biodiesel fuel PFR Olive oil | S-29 | 585 | |
A303 | $B9ZAG$rMQ$$$?%P%$%*%G%#!<%<%k9g@.$K$*$1$kL}$N2CG.=hM}$N1F6A(B | lipase biodisel oil | S-29 | 782 | |
A304 | CaO$BFbJq%^%$%/%m%+%W%;%k$rMQ$$$?%P%$%*%G%#!<%<%k9g@.%W%m%;%9$K4X$9$k8!F$(B | biodiesel microcapsule calcium oxide | S-29 | 935 | |
A305 | $BM7N%;iKC;@;D^VL}$r86NA$H$7$?%P%$%*%G%#!<%<%kG3NA9g@.(B | acid oil biodiesel fuel ion-exchange resin | S-29 | 136 | |
(10:40$B!A(B12:00)$B!!(B($B:BD9(B $B;3ED(B $BGn;K(B) | |||||
A306 | Continuous bio-oil production by pyrolysis of oil palm kernel shell | bio-oil oil palm kernel shell pyrolysis | S-29 | 330 | |
A307 | $B;@2=E4?(G^$rMQ$$$?%0%j%;%j%s$+$i$N@PL}4XO"M-MQ2=3XJ* | glycerol iron oxide catalyst biomass | S-29 | 1032 | |
A308 | ($B9V1iCf;_(B) | 100 | 229 | ||
A309 | $B%]%j%V%A%l%s%5%/%7%M!<%H=L=E9g$K4X$9$kF0NO3XFC@-(B | PBS Bioplastic Polycondensation | S-29 | 236 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B>e@n(B $B>-9T(B) | |||||
A313 | CO2$B@:@=MQ(BH2S$B5[Ce:^$N3+H/(B | IGCC H2S absorber CO2 capture | S-29 | 926 | |
A314 | $BI9>=%F%s%W%l!<%HK!$K$h$k%9%k%[4pF3F~%+!<%\%s%^%$%/%m%O%K%+%`$NAO@=(B | ice templating method partial carbonization solid acid catalyst | S-29 | 212 | |
A315 | $BI9>=%F%s%W%l!<%HK!$rMQ$$$?%J%U%#%*%s | ice templating method microhoneycomb solid acid catalyst | S-29 | 244 | |
(14:00$B!A(B15:00)$B!!(B($B:BD9(B $BCf@n(B $B7I;0(B) | |||||
A316 | $B | zeolite seed-assisted synthesis organic structure-directing agent free | S-29 | 225 | |
A317 | $BB?9&@-%7%j%+C4;}J#9g?(G^D4@=K!$H$7$F$ND6NW3&N.BN$NMxMQ(B | Supercritical CO2 Mesoporous Silica Catalyst Preparation | S-29 | 572 | |
A318 | Pt$B$H%+!<%\%s%J%N%A%e!<%V$+$i@.$k%3%s%]%8%C%H$ND4@=$H$=$l$i$N?(G^H?1~$X$N1~MQ(B | Pt Carbon nanotube | S-29 | 552 | |
B$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c:`NA!&3&LLF$O@2q!V:`NAAO@.$H3&LL8=>]!W!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B1v0f(B $B>O5W(B) | |||||
B301 | $B3&LL3h@-:^2q9gBN$N9=B$$K5Z$\$9QrCGB.EYJB$S$KBZN1;~4V$N1F6A(B | Mixing Coaxial Cylinder CFD | S-9 | 878 | |
B302 | $B%i%a%iAj$rCr7?$H$9$kAX>u%K%*%V;@%J%N%7!<%H$N9g@.5Z$SAB?e@-M-5!2=9gJ*$KBP$9$k8w?(G^3h@-(B | layered niobate nanosheets lamellar self-assembly photocatalyst | S-9 | 681 | |
B303 | Span80$B%Y%7%/%kKlFC@-$NI>2A(B:Fluid, Flexible, Wet$B$JKlI=LL(B | Vesicle Cholesterol Drug delivery | S-9 | 718 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BEDCf(B $B=SJe(B) | |||||
B304 | $BEE2r | surfactant implicit solvent model MD simulation | S-9 | 1088 | |
B305 | $B2aNd5Q1UBN$NNO3X1~Ez$KBP$9$k0lHL2=9=@.J}Dx<0$N8!F$(B | supercooled liquids stress response constitutive equaiton | S-9 | 211 | |
B306 | Korteweg$BNO$K$h$C$F<+H/E*$K1?F0$9$k1UE)$NJQ7AG=(B | Korteweg force Aqueous two-phase system Self-propelled motion of droplet | S-9 | 71 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B?9Dg(B $B??B@O:(B) | |||||
B307 | $B2=3X%^%i%s%4%KIT0BDj@-$,%$%*%s | Marangoni instability dynamic interfacial tension oscillatory drop tensiometry | S-9 | 606 | |
B308 | $B!X%2%k2=!Y$N%7%0%J%k$H$7$F$NNO3P%$%s%Q%k%9(B | gellation impulsive reation force trigger for cognition | S-9 | 973 | |
B309 | $B%"%k%_%K%&%`M[6K;@2=HiKl$NG.?eIu9&=hM}$K4X$9$k8&5f(B | Anodized aluminum Hot water sealing Aging | S-9 | 846 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B4_ED(B $B>;9@(B) | |||||
B313 | Role of Pluronic Block Copolymers in Mediating Anisotropic Assembly of Silica Nanospheres | Pluronic block copolymers silica nanospheres anisotropic assembly | S-9 | 1076 | |
B314 | $BN3;RI=LL$N6I=j?F?e@->l$rMxMQ$7$?L55!1v$NM-5!MOG^$X$NJ,;6(B | Surface modification Nanoparticle Inorganic salt | S-9 | 627 | |
B315 | $BJ,;6$7$?%7%j%+%J%NN3;R$N6E=8%@%$%J%_%/%9(B | colloid aggregation process mass transfer | S-9 | 354 | |
(14:00$B!A(B15:00)$B!!(B($B:BD9(B $B;38}(B $BLT1{(B) | |||||
B316 | $B;@2=0!1t%J%NGvKl$NDc29?eG.9g@.(B | ZnO seed growth hydrothermal synthesis | S-9 | 1006 | |
B317 | $B%"%k%-%k%"%_%s$rMQ$$$?J?HD>e$K$*$1$k6d%J%N%o%$%d!<$NL5MOG^9g@.K!(B | silver nanowire alkylamine crystal growth | S-9 | 318 | |
B318 | $B<+8JAH?%2=;@2=J*%J%N%o%$%d$K$*$1$k@.D9%@%$%J%_%/%9$HEE5$M"AwJ*@-$X$N1F6A(B | Oxide nanowired Crystal growth dynamics Transport properties | S-9 | 762 | |
(15:00$B!A(B16:00)$B!!(B($B:BD9(B $B0p_7(B $B?8(B) | |||||
B319 | $B;@2=J*%J%N%o%$%d$K$h$kDq93JQ2=%a%b%j6I:_EAF35!9=$N2rL@(B | Oxide nanowire Resistive switching Nonvolatile memory | S-9 | 798 | |
B320 | ($B9V1iCf;_(B) | 100 | 590 | ||
B321 | $BB?9&BN$KIUM?$7$?%]%j%^!<%V%i%7$*$h$S%k!<%D$NDjNLI>2A(B | swelling polymer brush and root formation percentage | S-9 | 514 | |
(16:00$B!A(B17:00)$B!!(B($B:BD9(B $B;3Cf(B $B??Li(B) | |||||
B322 | $BJ,;RG'<1%2!<%HKl$K$*$1$k%$%*%s?;F)05$N2r@O(B | Ionic osmotic pressure Molecular recognition Ion-gating membrane | S-9 | 278 | |
B323 | Measurement of Polystyrene Thermal Property Using Dual Quartz Crystal Resonators | Thermal Property Measurement Quartz Crystal Resonator Morphology Monitoring | S-9 | 16 | |
B324 | $B?e;@4p$rF3F~$7$?B?9&@-G[0L9bJ,;R$N9g@.$H$=$N?eAG5[CeFC@-(B | Metal-Organic Frameworks Hydrogen storage Adsorption | S-9 | 544 | |
E$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
(9:40$B!A(B10:20)$B!!(B($B:BD9(B $BHDC+(B $B5A5*(B) | |||||
E303 | [$B5;=Q>^(B] $BL5MO:^?M9)Hi3W$N9)6H2=(B | scej | S-45 | 1104 | |
E304 | [$B5;=Q>^(B] $BEE;R%G%P%$%9@=B$GS?e$+$i$N%j%s;@2s<}5;=Q$N3+H/$H | scej | S-45 | 1105 | |
(10:20$B!A(B11:00)$B!!(B($B:BD9(B $B@>;3(B $B3P(B) | |||||
E305 | [$B5;=Q>^(B] $B%P%$%*%^%9$N%,%92=%a%?%N!<%k9g@.5;=Q(B | scej | S-45 | 1106 | |
E306 | [$B5;=Q>^(B] $B%"%k%_%J!>%,%i%9Dc29>F7k4pHD$N94B+>F7k%W%m%;%9$N3+H/(B | scej | S-45 | 1107 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B66K\(B $BK'9((B) | |||||
E307 | [$B5;=Q>)Ne>^(B] $B%]%j%^! | scej | S-45 | 1108 | |
E308 | [$B5;=Q>)Ne>^(B] $B2!=P5!$rMQ$$$?D6NW3&N.BNMQ%W%m%;%9$N@_7W!&3+H/(B | scej | S-45 | 1109 | |
E309 | [$B5;=Q>)Ne>^(B] $BC:;@%(%9%F%k@=B$5;=Q$N3+H/(B | scej | S-45 | 1110 | |
G$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c%W%i%:%^%W%m%;%C%7%s%0$K$h$k2=3X9)3X$N?7E83+!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BB@ED(B $B8w9@(B) | |||||
G301 | $BHsJ?9U%W%i%:%^G3>F$rMQ$$$?M-5!GQ1U$ND>@\=hM}(B | Non-Thermal Plasma Microwave Liquid Waste Treatment | S-3 | 1039 | |
G302 | $B%O%$%V%j%C%I%W%i%:%^$rMQ$$$?%,%i%986NA$N%$%s%U%i%$%HMOM;(B | multi-phase arc hybrid plasma in-flight melting | S-3 | 432 | |
G303 | $BB?Aj8rN.%"!<%/$N5sF0$H9b29>l$N@)8f(B | Thermal plasma Multi-Phase Arc Image Analysis | S-3 | 443 | |
(10:00$B!A(B10:40)$B!!(B($B:BD9(B $BEOJU(B $BN49T(B) | |||||
G304 | Hydrodynamic Characteristics of the Spouted Bed in the Gliding Arc Discharge | gliding arc discharge spouted bed particle image velocity | S-3 | 861 | |
G305 | $B3h@-%3!<%/%9$GM65/$5$l$kBg5$05%^%$%/%mGH%W%i%:%^$K$h$kL5?(G^C&>KFC@-(B | Plasma DeNOx Activated cokes | S-3 | 815 | |
H$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c:G@hC<2=3X9)3X$K4sM?$9$k>=@O5;=Q!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B>>K\(B $B??OB(B) | |||||
H301 | [$B>7BT9V1i(B] $BM-5!2=9gJ*7k>=$NN37B$K5Z$\$9%^%$%/%mGH>H | 1 2 3 | S-12 | 1021 | |
H302 | $BD62;GH>H | heat storage ultrasonic irradiation nucleation | S-12 | 923 | |
H303 | $BH/3K:^$K$h$k@xG.C_G.:`$N2aNd5Q4KOB8z2L(B | heat storage material sodium acetate trihydrate nucleation agent | S-12 | 641 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B@52,(B $B8y;N(B) | |||||
H304 | $BCf6u;eKl$rMxMQ$7$?7k>=J,N%%W%m%;%9$N8!F$(B | crystal size distribution membrane filtration batch crystallization | S-12 | 686 | |
H305 | $BD6NW3&MOBN5^B.KDD%K!$K$h$kM-5!H>F3BNMQGvKl$NAO@=5;=Q$H7k>=@.D98=>](B | RESS method Organic thin film production Crystal growth phenomena | S-12 | 551 | |
H306 | [$B>7BT9V1i(B] $BM-5!%(%l%/%H%m%K%/%91~MQ$rL\;X$7$?D6NW3&N.BNCf$K$*$1$k7k>=@-M-5!GvKl@.D95;=Q(B | Organic electronics Supercritical fluids Crystal growth technique | S-12 | 373 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BFbED(B $BGn5W(B) | |||||
H307 | [$B>7BT9V1i(B] $B3IYB7?>=@OAeFb$K$*$1$k8G1UJ,;65sF0$N%i%0%i%8%"%s2r@O(B | 1 2 3 | S-12 | 380 | |
H308 | [$BE8K>9V1i(B] $B4D6-!&%(%M%k%.!<%G%P%$%9$K$*$1$kGvKl!&7k>=@.D9%W%m%;%9$H>=@O5;=Q(B | environmentally friendly and energy devices Thin film deposition Crystal growth | S-12 | 532 | |
(13:00$B!A(B14:20)$B!!(B($B:BD9(B $BFbED(B $BGn5W(B) | |||||
H313 | [$B4pD49V1i(B] $B@=Lt$X$N>=@O9)3X$N9W8%$H:#8e$N2]Bj(B | Drugs Crystallization Crystal Growth | S-12 | 1102 | |
H315 | [$BE8K>9V1i(B] $B:G6a$N@=:^@_7W$H@=:^%W%m%;%9(B | Formulation design Formulation process Crystallization | S-12 | 1041 | |
(14:20$B!A(B15:00)$B!!(B($B;J2q(B $B>kF;(B $B=$(B) | |||||
H317 | [$BE8K>9V1i(B] $BD6NW3&Fs;@2=C:AG>=@OK!$K$h$k5[F~$KE,$7$?HyN3;R$N@_7W(B | 1 2 3 | S-12 | 1022 | |
(15:00$B!A(B16:00)$B!!(B($B:BD9(B $B;03Q(B $BN4B@(B) | |||||
H319 | $B=`0BDj0hB,DjCM$KBP$9$k7k>=@.D9$N1F6A(B | Batch crystallization MSZW(Metastable zone width) Simulation | S-12 | 789 | |
H320 | $B%"%_%m%$%I@-%?%s%Q%/ | Membranome biomembrane Crystallization amyloid | S-12 | 969 | |
H321 | $B@ECV>r7o2<$K$*$1$k(BL-$B%"%i%K%s7k>=$N3KH/@85sF0(B | S-12 | 911 | ||
(16:00$B!A(B17:00)$B!!(B($B:BD9(B $BEgFb(B $B | |||||
H322 | $BLtJ*$N@=:^5;=Q$KM-MQ$JD6NW3&Fs;@2=C:AG(B+$BLtJ*7O$NJ?9UJ*@-$HHsJ?9UJ*@-(B | Supercritical carbon dioxide Particulate design Physical property | S-12 | 1101 | |
H323 | $B2sJ,>=@O$K$*$1$kBg7k>= | batch crystallization fines dissolution IH | S-12 | 616 | |
H324 | $BD6NW3&MOBN5^B.KDD%K!$K$h$k%F%*%U%#%j%s$NHyN3;RAO@=$HN3;R@_7W5;=Q$N3+H/(B | RESS method Theophylline microparticle production Particulate design | S-12 | 1031 | |
I$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B3X2q>^!&8&5f>^Ey5-G09V1i(B | |||||
(9:20$B!A(B10:00)$B!!(B($B;J2q(B $BD9Eo(B $B519T(B) | |||||
I302 | [$B3X2q>^(B] $B;}B32DG= | scej | S-46 | 1111 | |
(10:00$B!A(B10:40)$B!!(B($B;J2q(B $B7*K\(B $B1QOB(B) | |||||
I304 | [$B3X2q>^(B] $B7k>=9)3X$*$h$S7k>=2=9)3X$K$*$1$kJ?9UO@$HB.EYO@(B | scej | S-46 | 1112 | |
(10:40$B!A(B11:20)$B!!(B($B;J2q(B $BBgEh(B $B42(B) | |||||
I306 | [$B8&5f>^(B] $BN3;R!&1UBN7OJ,N%%W%m%;%9$N9bEY2=!&BN7O2=$K4X$9$k8&5f(B | scej | S-46 | 1113 | |
(11:20$B!A(B12:00)$B!!(B($B;J2q(B $B?\F#(B $B2mIW(B) | |||||
I308 | [$B8&5f>^(B] $B%(%l%/%H%m%K%/%9J,Ln$K$*$1$kHy>.$a$C$-5;=Q$N2=3X9)3XE*8&5f(B | scej | S-46 | 1114 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $B>eJ?(B $B@5F;(B) | |||||
I313 | [$B8&5f>^(B] $B@xG.J]M-HyN3;R%9%i%j! | scej | S-46 | 1115 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $B>>1:(B $B>OM5(B) | |||||
I315 | [$B8&5f>)Ne>^(B] $B%7%j%+%M%C%H%o!<%/9=B$@)8f$K$h$k?75,?eAGJ,N%Kl$NAO@=(B | scej | S-46 | 1116 | |
I316 | [$B8&5f>)Ne>^(B] $B%(%/%;%k%.!<:F@8$N86M}$K4p$E$$$?>J%(%M%k%.!<$J%W%m%;%9@_7W | scej | S-46 | 1117 | |
I317 | [$B8&5f>)Ne>^(B] $B9ZAG$rMQ$$$?%?%s%Q%/ | scej | S-46 | 1118 | |
(14:40$B!A(B15:20)$B!!(B($B:BD9(B $BEDC+(B $B@5?N(B) | |||||
I318 | [$B8&5f>)Ne>^(B] $BD6NW3&Fs;@2=C:AG$X$N6bB0:xBN$NMO2rEY$H:xBN9=B$$N8z2L$K4X$9$k8&5f(B | scej | S-46 | 1119 | |
I319 | [$B8&5f>)Ne>^(B] $B?M9)%7%c%Z%m%s>.J,;R$rMQ$$$?CAGre$*$h$SCAGr | scej | S-46 | 1120 | |
J$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c:`NA!&3&LLF$O@2q!VEII[5;=Q$HI=LL2C9)!W!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BLxBt(B $B7r;J(B) | |||||
J301 | [$B>7BT9V1i(B] $B%$%s%/%8%'%C%H@.KlK!$K$*$1$k1UE)FbIt$N0\F08=>](B | inkjet polymer solution natural convection | S-11 | 80 | |
J303 | 2$B@.J,MO1UE)$N>xH/B.EY$N8!F$(B | Evaporation Binary Solvent Droplet | S-11 | 849 | |
(10:00$B!A(B10:40)$B!!(B($B:BD9(B $B;01:(B $B=(@k(B) | |||||
J304 | $B%]%j%^! | phase separation coating drying rate | S-11 | 471 | |
J305 | $B7V8w4Q;!$K$h$k%U%#%k%`4%AgCf$N9bJ,;RJP@O2aDx$N2D;k2=(B | visualization segregation coating | S-11 | 387 | |
(10:40$B!A(B11:40)$B!!(B($B:BD9(B $B0B86(B $B8-(B) | |||||
J306 | [$B>7BT9V1i(B] $B9bJ,;RMO1U$+$i$N%U%#%k%`7A@.2aDx$K$*$1$kI=LL!&3&LL$N8G2=8=>]$H;DN11~NOH/8=5!9=(B | Solvent cast polymer film Residual stress Solidification process | S-11 | 83 | |
J308 | real time FT-IR$B$K$h$k;g30@~9E2= | photopolymerization UV curing real time FT-IR | S-11 | 47 | |
(11:40$B!A(B12:00)$B!!(B($B;J2q(B $B9-@%(B $BH6(B) | |||||
J309 | $B%Q!<%U%k%*%m%"%k%-%k4p4^M-9bJ,;R6&=E9gBN$rMQ$$$k?75,$JI=LLY{?e=hM}5;=Q(B | Hydrophobic surface Perfluoroalkyl-containing copolymers Polymer-coated surface | S-11 | 31 | |
(13:00$B!A(B13:40)$B!!(B($B:BD9(B $B9-@%(B $BH6(B) | |||||
J313 | $B<<29%$%s%W%j%s%HK!$K$h$k%7%j%+%,%i%9I=LL$X$NHy:Y2C9)!>(BSiO2-PVA$B%J%N%3%s%]%8%C%H$N:n@=%W%m%;%9$N3+H/!>(B | Nanocomposite Silica glass Room-temperature imprinting | S-11 | 184 | |
J314 | $BM6EEJ*@-$rMxMQ$7$?EI9)AXCf$K4^$^$l$kHyNL?eJ,$NB,DjJ}K!(B | dielectric property micro wave water content | S-11 | 395 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $B@u4V(B $B1QIW(B) | |||||
J315 | OpenFOAM$B<+M3I=LL2r@O@:EY$N8!>Z(B | OpenFOAM free surface CFD | S-11 | 746 | |
J316 | $B%V%l!<%IEII[$NEII[N.F02r@O(B | blade coating CFD FSI | S-11 | 752 | |
J317 | $B%0%i%S%"EII[$K$*$1$kE> | gravure coating transfer process CFD | S-11 | 497 | |
K$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c | |||||
(9:00$B!A(B9:40)$B!!(B($B;J2q(B $BGr@P(B $BJ8=((B) | |||||
K301 | [$BE8K>9V1i(B] $B8w?(G^Ne5/MQ8w8;$NFC@-$H$=$N1~MQ(B | $B8w?(G^(B $B8w8;(B | S-32 | 5 | |
(9:40$B!A(B10:20)$B!!(B($B;J2q(B $B;31[(B $BM5;J(B) | |||||
K303 | [$BE8K>9V1i(B] $B%O%$%V%j%C%I7?8w?(G^5!G=$NZNc$HE8K>!&!&!&KI1x!";&6]5;=Q$rCf?4$K(B | scej | S-32 | 1126 | |
(10:20$B!A(B11:20)$B!!(B($B:BD9(B $B2CF#(B $B>!H~(B) | |||||
K305 | $B%a%=%]!<%i%9%A%?%K%"!&%7%j%+J#9gBN$rMQ$$$?8wJ,2r(B | Photocatalysis Adsorption Titania | S-32 | 332 | |
K306 | $B%R%I%m%-%7%i%8%+%k$rMQ$$$?%j%0%K%s$N2~ | Lignin hydroxylradical Fenton's reaction | S-32 | 480 | |
K307 | $B%R%I%m%-%7%i%8%+%k$rMQ$$$?%j%0%K%s$N2~ | Lignin hydroxyl radical Fenton's reaction | S-32 | 801 | |
(11:20$B!A(B12:00)$B!!(B($B:BD9(B $BApJI(B $B9n8J(B) | |||||
K308 | $B%H%j%/%m%m%7%i%s$NK=AvH?1~4m81@-(B($BBh(B2$BJs(B) | Trichlorosilane Physical hazard Thermal analysis | S-32 | 719 | |
K309 | tert-$B%V%A%k%(%A%k%(!<%F%k$NCyB"0BDj@-(B | tert-Butyl ethyl ether Autoxidation Thermal analysis | S-32 | 724 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $BGr@P(B $BJ8=((B) | |||||
K313 | [$B0MMj9V1i(B] $B8w?(G^$N1~MQ$KL$Mh$O$"$k$+(B:$B?e=hM}%W%m%;%9 | scej | S-32 | 1127 | |
(13:40$B!A(B14:20)$B!!(B($B;J2q(B $BBg^<(B $B1Q;R(B) | |||||
K315 | [$BE8K>9V1i(B] $B8w?(G^1~MQ$NL$Mh(B:$B6u5$>t2=%W%m%;%9$K$D$$$F(B | Photocatalyst VOC Photocatalytic reactor | S-32 | 148 | |
(14:20$B!A(B15:40)$B!!(B($B:BD9(B $BHf9>Eh(B $BM42p(B) | |||||
K317 | $BDcG;EYE4%$%*%s$*$h$SE4J4$rMQ$$$?%U%'%s%H%sH?1~5!9=(B | Fenton reaction trichloroethylene mechanism | S-32 | 720 | |
K318 | $B | Photocatalyst VOC Photocatalytic reactor | S-32 | 146 | |
K319 | $BC4BN$N0[$J$k8w?(G^%S!<%:$rMQ$$$??eCf%U%'%N!<%k$N8wJ,2r5sF0(B | Photocatalysis Phenol Degradation Catalyst Support Interaction | S-32 | 446 | |
K320 | Enhancing the TiO2 photocatalytic activity and its application for pesticides degradation | Photocatalysis Pd-TiO2/SiO2 Pesticide Degradation | S-32 | 457 | |
L$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c%"%s%b%K%"$rMQ$$$?(BCO2$B%U%j!<%(%M%k%.!<%-%c%j%"%7%9%F%`$N>-MhE8K>!d(B | |||||
(9:20$B!A(B10:20)$B!!(B($B:BD9(B $B;T@n(B $B5.G7(B) | |||||
L302 | $B1v2=%+%k%7%&%`7OJ#9g%O%m%2%s2=J*$rMQ$$$?%"%s%b%K%"CyB"(B | ammonia storage ammine complex mixed halide | S-4 | 493 | |
L303 | $BN.DL<0H?1~4o$rMQ$$$?%"%s%b%K%"J,2r$K$h$k?eAG@=B$(B | Ammonia Decomposition Hydrogen Production Catalyst | S-4 | 498 | |
L304 | Simulation and experimental studies of ammonia decomposition in catalytic membrane reactors | Ammonia decomposition H2 production Catalytic membrane reactor | S-4 | 549 | |
(10:20$B!A(B11:00)$B!!(B($B;J2q(B $B55;3(B $B=(M:(B) | |||||
L305 | [$B>7BT9V1i(B] $B%"%s%b%K%"$rMQ$$$??eAGM"Aw(B | Ammonia Hydrogen transportation Hydride | S-4 | 44 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B8~0f(B $B?B(B) | |||||
L307 | $BF)2a7?EE;R82Hy6@$K$h$k%"%s%b%K%"$H?eAG2=J*$NC&?eAG2=H?1~$=$N>l4Q;!(B | ammonia TEM hydrogen | S-4 | 983 | |
L308 | $BEE5$J,2r$K$h$k1UBN%"%s%b%K%"$+$i$N?eAGJ|=P(B | liquid ammonia electrolysis hydrogen desorption | S-4 | 690 | |
L309 | $B%,%9=[4DAuCV$rMQ$$$?%"%k%+%j6bB0?eAG2=J*%"%s%b%K%"J#9g7O$N8zN(2=(B | Hydrogen storage systems Ammonia Alkali metal hydrides | S-4 | 473 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $BETN1(B $BL-N;(B) | |||||
L313 | [$BE8K>9V1i(B] $B%"%s%b%K%"MxMQ5;=Q$NA4BNE8K>(B | Ammonia Production Hydrogen carrier Thermochemical Cycle | S-4 | 11 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $BLnED(B $BNh<#(B) | |||||
L315 | $BG.2=3X%5%$%/%k$rMxMQ$7$?%"%s%b%K%"$N@=B$(B | ammonia thermo chemical cycle | S-4 | 638 | |
L316 | $B%"%s%b%K%"%,%9$+$i$N<<29$G$N?eAGH/@8(B | Hydrogen generation Catalyst metal amides | S-4 | 285 | |
L317 | $B1UBN%"%s%b%K%"$rMxMQ$7$?9b05?eAG@=B$5;=Q(B | Hydrogen generation Ammonia Chemical compressor | S-4 | 96 | |
(14:40$B!A(B15:20)$B!!(B($B;J2q(B $B>e5\(B $B@.G7(B) | |||||
L318 | [$B>7BT9V1i(B] $B%"%s%b%K%"2s<}7?4%<0%a%?%sH/9ZK!$N3+H/(B | Ammonia stripping dry methane fermentation organic wastes | S-4 | 45 | |
(15:20$B!A(B16:20)$B!!(B($B:BD9(B $B>.Eg(B $BM37Q(B) | |||||
L320 | $B7\J5$N7y5$@-C&Cb!"%a%?%sFsCJH/9Z(B($B9bCbAG4^M-GQ4~J*$N%a%?%sH/9Z(B) ($BF|N)%(%s%8%K%"%j%s%0!&%"%s%I!&%5!<%S%9(B) ($B@5(B)$B:4!9LZ(B $B9,0l(B $B!&(B | Ammonia stripping Chicken manura Anaerobic digestion | S-4 | 431 | |
L321 | $B7\J5$N4%<0%a%?%sH/9Z$K$*$1$k7y5$E*G";@J,2r%"%s%b%K%"@8@.Hy@8J*$N2r@O(B | Ammonia uric acid dry methane fermentation | S-4 | 199 | |
L322 | $B%j%s;@%^%0%M%7%&%`%"%s%b%K%&%`$N%b%k%U%)%m%8!<@)8f$K$h$k%"%s%b%K%"2s<}G=$N8~>e(B | magnesium ammonium phosphate morphology ammonia recovery | S-4 | 597 | |
N$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c:YK&!J30!KHy>.4D6-$N@)8f$H0eNE$X$N1~MQ!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B:BD9(B $BEOn5>;=S(B) | |||||
N301 | $B<'NO$rMQ$$$?:YK&A`:n5;=Q$N3+H/(B | tissue engineering magnetite nanoparticle co-culture | S-26 | 21 | |
N302 | $B;@AGF)2a@-:`NA$rMQ$$$?G]M\AH?%%b%G%k(B | Oxygen 3D culture Energy production | S-26 | 308 | |
(9:40$B!A(B11:20)$B!!(B($B:BD9(B $B | |||||
N303 | [$BE8K>9V1i(B] $B%R%HB?G=@-44:YK&$N%U%#!<%@!<%U%j!<4D6- | Feeder cell Pluripotent stem cell Niche | S-26 | 117 | |
N305 | $B | Tumor microenvironment Spheroid culture Cell-cell interaction | S-26 | 183 | |
N306 | [$BE8K>9V1i(B] $B$,$s$NH/@8!&?JE8$H(BmicroRNA | microRNA cancer stem cell microenvironment | S-26 | 187 | |
O$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c?)IJ9)3X$N:G6a$NE83+$H9b5!G=2=@=IJ$K8~$1$?%"%W%m!<%A!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B5H0f(B $B1QJ8(B) | |||||
O301 | $BE|N`%"%b%k%U%!%9%^%H%j%/%9$N?eJ,<}Ce>uBV$HJ*M}2=3XE*FC@-$H$N4X78(B | amorphous sugar water sorption glass transition | S-28 | 728 | |
O302 | $BEyJ,N%EY6J@~$K4p$E$$$?%/%m%^%H%0%i%U%#! | chromatography polyphenol resolution | S-28 | 960 | |
O303 | $B%"%k%.%s;@Kl$N(BEgg-Box Junction$B7A@.$K$h$kJ,;RJ,2h@-G=$r3hMQ$7$??)IJ@.J,$NJ,N%(B | Membrane Calcium alginate Mass transfer | S-28 | 469 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B:#B<(B $B0]9n(B) | |||||
O304 | $B2M66$5$l$?%W%k%i%sE|:?$H&J(B-$B%+%i%.!<%J%s%M%C%H%o!<%/$N6(F18z2L$K$h$kKlJ,N%5!G=$N9=C[(B | food polymer composite membrane mass transfer | S-28 | 315 | |
O305 | Simulation of cooking fish under microwave irradiation | Microwave cooking Temperature distribution Finite element analysis | S-28 | 516 | |
O306 | $B%+%k%\%K%kF3F~E|$N%?%s%Q%/ | saccharide modification membrane | S-28 | 644 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B66K\(B $BFF(B) | |||||
O307 | $BDjB.<>EYA}2CK!$K$h$kJ.L84%AgJ4Kv$+$i$N%U%l!<%P!<=yJ|5sF0(B | microcapsules sustained release | S-28 | 674 | |
O308 | $B%W!<%"%kCc@=B$2aDx$K$*$1$kH/9Z>r7o$HM-5!@.J,JQ2=(B | puer tea PCR-DGGE fermentation | S-28 | 790 | |
O309 | $B3F | starch pulverization micro-scaled | S-28 | 1056 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B | |||||
O313 | $B%W%m%H%s(BNMR$BK!$K$h$k?)@=IJ@_7W$N$?$a$N?7$7$$;n$_(B | water activity proton NMR analysis food science | S-28 | 765 | |
O314 | CDE(Color Distribution Entropy)$B$rMQ$$$?%$%A%4304QIJ2A(B | Color distribution entropy Image analysis Strawberry | S-28 | 944 | |
O315 | $B%3!<%R!<0{NA$N2CG.J]B82aDx$K$*$1$k@V305[<}%9%Z%/%H%kJQ2=(B | brewed coffee heating infrared spectroscopy | S-28 | 329 | |
P$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c2=3XAuCV$K$*$1$k:`NA5;=Q!d(B | |||||
(10:20$B!A(B11:00)$B!!(B($B:BD9(B $Bc&K\(B $BNIB'(B) | |||||
P305 | $B3&LL>uBV$*$h$S1U?;F~8=>]J,@O$K$h$k | Lining Blister Immersion test | S-23 | 1002 | |
P306 | $BD62;GH$K$h$kBQ?)(BFRP$B@=5!4o$NNt2=I>2A$H8!::$NM-8z@-(B | FRP Risk Based Inspection Ultrasonic Testing | S-23 | 503 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B5WJ]Fb(B $B>;IR(B) | |||||
P307 | $BD9;~4V;HMQ$N(B9Cr$B%\%$%i!<%A%e!<%V$N?e>x5$;@2=%9%1!<%k$K$h$k%/%j!<%WB;=}D4::(B | Creep Rupture Super heater Heat Transfer | S-23 | 1098 | |
P308 | $B2=3XAuCV$K$*$1$k:`NA5;=Q(B | acoustic method monitoring technique plant maintenance | S-23 | 102 | |
P309 | UPS$B1tC_EECS$NNt2=(B | UPS Lead-Acid Battery Degradation | S-23 | 868 | |
Q$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!cBh#1#02s%W%m%;%9%G%6%$%s3X@8%3%s%F%9%H!d(B | |||||
(9:00$B!A(B12:00)$B!!(B($B;J2q(B $B;32<(B $BA1G7(B) | |||||
Q301 | $BBh(B10$B2s%W%m%;%9%G%6%$%s3X@8%3%s%F%9%H(B | Process Design Process Simulator Engineering Education | S-19 | 292 | |
(13:20$B!A(B14:00)$B!!(B($B:BD9(B $B;32<(B $BA1G7(B) | |||||
Q314 | [$B>7BT9V1i(B] $BElBg2=3X%7%9%F%`9)3X@l96$K$*$1$k>pJs5;=Q4XO"650i$N | Computer chemistry Product design Chemoinformatics | S-19 | 382 | |
Q315 | [$B>7BT9V1i(B] $BL>BgJ,;R2=3X9)3X%3!<%9$K$*$1$k>pJs5;=Q650i$X$N | Engineering education Information technology | S-19 | 669 | |
(14:00$B!A(B15:20)$B!!(B($B;J2q(B $B2#;3(B $B9n8J!&NkLZ(B $B9d(B) | |||||
$BAm9gF$O@(B | |||||
T$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c4D6-It2q%7%s%]%8%&%`!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B:BD9(B $B>eED(B $B8|(B) | |||||
T301 | $BBg5$Cf%&%$%k%9$N9b8zN(Ja=85Z$S0dEA;RA}I}K!$K$h$k?WB.8!CN(B | Virus Sampler Detection | S-21 | 254 | |
T302 | $B%J%H%j%&%`7O5[<}:`$K$h$kH>F3BNGS%,%9$N4%<05[<}FC@-(B | adsorption fluorine gas-solid reaction | S-21 | 109 | |
(9:40$B!A(B11:00)$B!!(B($B:BD9(B $B;3K\(B $B8wIW(B) | |||||
T303 | $B%Y%s%<%s$N40A4;@2=$KE,$7$?;@2=F<7O?(G^$N3+H/(B | copper oxide catalyst benzene total oxidation | S-21 | 351 | |
T304 | $B?eAG$r4T85:^$H$7$?(BLaFeO3$B7?$Z%m%V%9%+%$%H?(G^$K$h$k(BNOx$B5[B"(B-$B4T85H?1~(B | perovskite nitrogen oxide NOx storage and reduction | S-21 | 943 | |
T305 | $BC:AG7O5[Ce:^$K$h$k4%<0C&N2FC@-$KM?$($k6&B8%,%9$N1F6A(B | adsorption gasification sulfuric compound | S-21 | 833 | |
T306 | $BH>4%AgCO$G@8;:$5$l$?(BJatropha $B$+$i$N1UBNG3NA@=B$$NDjNLI>2A(B | Life Cycle Assessment biomass Jatropha | S-21 | 260 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B9b66(B $B?-1Q(B) | |||||
T307 | $BGQ?)MQL}$N%(%9%F%k2=$K4X$9$k8&5f(B | Waste cooking oil Biodiesel Transesterification | S-21 | 246 | |
T308 | $BLZ | humic substances iron binding capacity | S-21 | 296 | |
T309 | $BM-L@3$!&C^8e@n5%?e0h$K$*$1$kE4$NF0BVI>2A(B | iron chikugo river ecosystem | S-21 | 300 | |
(13:00$B!A(B14:20)$B!!(B($B:BD9(B $BCf3@(B $BN4M:(B) | |||||
T313 | $B4%AgCO$rBP>]$H$7$?EZ>m?e0\F0!&EAG.!&>x;6%7%_%e%l!<%?$N3+H/(B | arid land afforestation CO2 fixation watar transport | S-21 | 451 | |
T314 | $BF|N)$K$*$1$k(BCO2$B2=3X5[<}AuCVMQ5[<}1U$N3+H/(B | CO2 chemical absorption amine | S-21 | 1019 | |
T315 | $B9bBQ5W@-5[<}1U$rMQ$$$?(BCO2$B2=3X5[<}%W%m%;%9$N3+H/(B | carbon capture post combustion chemical absorption | S-21 | 417 | |
T316 | $BCf6u;eKl%3%s%?%/%?!<$K$h$k(BCO2$B2=3X5[<}%W%m%;%9$K$*$1$kH?1~29EY$N1F6A(B | CO2 absorption hollow fiber membrane high temperature | S-21 | 877 | |
(14:20$B!A(B15:20)$B!!(B($B:BD9(B $B2#;3(B $B8x0l(B) | |||||
T317 | $B%"%_%s5[<}1U$N(BCO2$BJ,N%!&:F@8%(%M%k%.!2A(B | Energy Cost Recovery CO2 Loading | S-21 | 43 | |
T318 | $B4D>u;05i%"%_%s$N(BCO2$B5[<}FC@-I>2A(B | CO2 absorbent amine | S-21 | 561 | |
T319 | $B1'ChA%Fb$K$*$1$k6u5$:F@8(B(CO2$B$N=|5n(B) | $B1'Ch(B $B6u5$:F@8(B $BFs;@2=C:AG(B | S-21 | 1043 | |
(15:20$B!A(B16:20)$B!!(B($B:BD9(B $B:y0f(B $B@??M(B) | |||||
T320 | $B29EY%9%$%s%0%O%K%+%`5[Ce%m!<%?$rMQ$$$?(BCO2$B$NJ,N%!&G;=L!&2s<}%7%9%F%`$N3+H/(B | honeycomb rotor temperature swing adsorption CO2 removal and concentration | S-21 | 120 | |
T321 | $B29EY%9%$%s%0%O%K%+%`5[Ce%m!<%?$KE,$9$k(BCO2$B5[Ce:^$N%9%/%j!<%K%s%0(B | honeycomb rotor CO2 adsorbent temperature swing adsorption | S-21 | 344 | |
T322 | $B%3%s%/%j!<%HGQ4~J*$rMQ$$$?Fs;@2=C:AG8GDj5;=Q(B | Waste Concrete Carbon Dioxide Fixation | S-21 | 717 | |
(16:20$B!A(B17:40)$B!!(B($B:BD9(B $B9>F,(B $BLw9,(B) | |||||
T323 | DRC$B$rMQ$$$?(BCO2$B5[<}1U$NH?1~G.B,Dj$K4X$9$k8&5f(B | CCS Heat of Absorption DRC | S-21 | 609 | |
T324 | 2$B@.J,7O:.9g2=3X5[<}1U$N5$1UJ?9UFC@-I>2A(B | CCS Vapor-liquid equilibrium CO2 absorption | S-21 | 633 | |
T325 | $B%;%i%_%C%/%95[<}:`= | Lithium Silicate CO2 Absorbent Reaction Rate | S-21 | 481 | |
T326 | CO2$B$N5[<}!":F@8$K8z2LE*$J5,B'= | Linear Flow High Operating Capacity Capillary Action | S-21 | 322 | |
U$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c(BCVD$B!&%I%i%$%W%m%;%9!!!]9=B$!&5!G=@)8f$NH?1~9)3X!]!d(B | |||||
(8:40$B!A(B10:20)$B!!(B($B:BD9(B $B?9(B $B?-2p(B) | |||||
U300 | $BD6NW3&N.BN$rMQ$$$?(BSiO2$B@=Kl$K$*$1$kN.$l%Q%?!<%s$N1F6AI>2A(B | supercritical fluid deposition SiO2 | S-31 | 566 | |
U301 | $B4pHD2CG.7?D6NW3&@=KlAuCV$N?tCMN.BN%7%_%e%l!<%7%g%s(B(III) | Supercritical Fluid Deposition omputational Flued Dynamics Convection | S-31 | 704 | |
U302 | $BD6NW3&(BCu$BGvKlBO@Q%W%m%;%9$NBN7OE*M}2r$K4p$E$/%&%'%O%9%1!<%kH?1~4o@_7W(B | Supercritica Fluid Deposition Cu | S-31 | 934 | |
U303 | Formation of Strontium Oxide Thin Film using Supercritical Fluid Deposition | Supercritical Fluid Deposition Oxidizer Strontium oxide | S-31 | 886 | |
U304 | $BD6NW3&Fs;@2=C:AGCf$K$*$1$kJ#9g;@2=J*GvKl$N:n@.(B | supercritical carbon dioxide thin film metal oxide | S-31 | 459 | |
(10:20$B!A(B11:40)$B!!(B($B:BD9(B $B6LCV(B $BD> | |||||
U305 | $BD6NW3&N.BN$rMxMQ$7$?(B3$B | Ruthenium Platinum Supercritical Fluid Deposition | S-31 | 444 | |
U306 | $BL5EE2r$a$C$-$K$h$k%k%F%K%&%`GvKl$N:n@.(B | electroless plating ruthnium barriermetal | S-31 | 490 | |
U307 | Al$B%I!<%W;@2=0!1tEE6K$rMQ$$$?6/M6EEBN%-%c%Q%7%?$NNt2=FC@-I>2A(B | ferroelectric material zinc oxide pulsed laser deposition | S-31 | 216 | |
U308 | [$BE8K>9V1i(B] $B%Q%o!<%(%l%/%H%m%K%/%9J,Ln$K$*$1$k(BCVD$B5;=Q$NE83+(B | power electronics chemical vapor deposition | S-31 | 930 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $BAz3@(B $B9,9@(B) | |||||
U313 | [$BE8K>9V1i(B] $BB@M[EECS!&G3NAEECS$K$*$1$k%_%/%m%J%N9=B$@)8f$H%0%j!<%s%$%N%Y!<%7%g%s$X$NE83+(B | fuel cell solar cell reaction engineering | S-31 | 636 | |
U315 | PE-CVD$BCf$G$N9bB.J.N.$rMQ$$$?%7%j%3%s@=Kl$NH?1~2r@O(B | Si deposition super sonic jet CFD | S-31 | 1089 | |
(14:00$B!A(B15:20)$B!!(B($B:BD9(B $B?y;3(B $B@5OB(B) | |||||
U316 | RF$B%W%i%:%^(BCVD$BK!$K$h$k(BTiC$BGvKl$NDc29@.D9$HJ*@-I>2A(B | film growth chemical vapor deposition titanium carbide | S-31 | 400 | |
U317 | SiC-CVD$B%W%m%;%9H?1~5!9=$N%^%k%A%9%1!<%k2r@O(B | Silicon Carbide CVD reaction kinetics | S-31 | 68 | |
U318 | $B | ALD Mass analysis Conformal coatings | S-31 | 783 | |
U319 | $B6bB0GvKl?(G^$rMQ$$$?2=3X5$Aj@.D9K!$K$h$k%0%i%U%'%s$N9g@.(B | CVD graphene interlayer | S-31 | 579 | |
(15:20$B!A(B16:20)$B!!(B($B:BD9(B $B2O@%(B $B85L@(B) | |||||
U320 | $BC1AX%+!<%\%s%J%N%A%e!<%V$N(BCVD$B9g@.$K$*$1$k%<%*%i%$%H?(G^C4BN$N1F6A(B | single-walled carbon nanotube zeolite CVD | S-31 | 1008 | |
U321 | $BE47O9g6b%P%k%/I=LL$rMQ$$$?%+!<%\%s%J%N%A%e!<%V9g@.K!(B | carbon nano tube chemical vapor deposition | S-31 | 275 | |
U322 | $B41G=4p=$>~$5$l$?(BMWCNTs$B>e$X$N%K%C%1%k@O=P$KBP$9$kM-5!7OE:2CJ*8z2L(B | carbon nanotube nickel electroless plating | S-31 | 502 | |
(16:20$B!A(B17:40)$B!!(B($B:BD9(B $BsnF#(B $B>f{J(B) | |||||
U323 | $B%+!<%\%s%J%N%U%!%$%P!<$NL5?(G^Dc29%W%i%:%^(BCVD$B$K$*$1$k4pHD7A>u$N1F6A(B | plasma-enhanced CVD carbon nanofiber carbon monoxide | S-31 | 699 | |
U324 | $BHs6E=8%J%N%5%$%:N3;R$N5$AjBO@Q$K$h$kGvKl9=B$$N7A@.(B | Non-agglomerated nanoparticle Thin film Aerosol deposition | S-31 | 954 | |
U325 | $B4pHD>eIUCeHyN3;R$K$h$k?eJ,2p:_1x@w8=>](B | Particle on surface Microcontamination Water deposition | S-31 | 961 | |
U326 | $B9b$$8w?(G^3h@-<($9%A%?%K%"HyN3;R$N5$Aj9g@.(B | gas phase hydrolysis photocatalyst | S-31 | 827 | |
W$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c%(%M%k%.!<%7%s%]%8%&%`!d(B | |||||
(9:20$B!A(B10:20)$B!!(B($B:BD9(B $BB'1J(B $B9TMG(B) | |||||
W302 | $BB?9& | biomass catalyst gasification | S-35 | 196 | |
W303 | $BLZ | biomass ash metal elements | S-35 | 593 | |
W304 | $BLZ | woody biomass metal nitrate pyrolysis | S-35 | 293 | |
(10:20$B!A(B11:20)$B!!(B($B:BD9(B $BIz8+(B $B@i?R(B) | |||||
W305 | $B%P%$%*%^%9G.J,2r4xH/@.J,$NFs | biomass gasification secondary pyrolysis elementary reactions | S-35 | 319 | |
W306 | Influence of pyrolysis temperature and sweeping gas flow rate on the production of bio-oil from fast pyrolysis of sewage sludge | Sewage sludge bio-oil chemical composition | S-35 | 873 | |
W307 | $BCO0hFC@-$K1~$8$?GQ4~J*7O%P%$%*%^%9=hM}$N%7%9%F%`E}9gI>2A(B | ASPEN plus Waste biomass System integration | S-35 | 357 | |
(11:20$B!A(B12:00)$B!!(B($B;J2q(B $BCf3@(B $BN4M:(B) | |||||
W308 | [$BE8K>9V1i(B] $BA%Gu$rMxMQ$7$?KI:R%9%^!<%H%0%j%C%I(B | Disaster reduction Smart grid Ship | S-35 | 880 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B>.NS(B $B=a(B) | |||||
W313 | $B2:OB$JMO:^=hM}$K$h$kDcIJ0LC:$*$h$S%P%$%*%^%9$NC&?e!&2~ | low-rank coal biomass solvent treatment | S-35 | 705 | |
W314 | $B@PC:%A%c!<$N(BCO2$B%,%92=$K$*$1$k(BO2$B$NE:2C8z2L(B | coal char gasification synergy effect IGCC | S-35 | 857 | |
W315 | HyPr-RING$B%W%m%;%9$K$*$1$k?eAGJ,N%$NB%?J8z2L(B | hydrogen hydrogen separation membrane HyPr-RING | S-35 | 890 | |
(14:00$B!A(B15:00)$B!!(B($B:BD9(B $B7(It(B $BOB90(B) | |||||
W316 | $B3lC:$N?75,C&?e!&2~ | Self-ignition tendency Low rank coals Solvent treatment | S-35 | 162 | |
W317 | $BMO:^Cj=P%U%i%/%7%g%M!<%7%g%sK!$K$h$k86NAC:!&G47k:`$NFp2=MOM;5sF0$N8!F$(B | Solvent extraction Coking coal Binder | S-35 | 707 | |
W318 | $BHyJ4C:Cf$N9[J*N3;R$N@->u$dG3>F;~$N5sF0$,@8@.3%N3;R7B$K5Z$\$91F6A(B | Purverized coal combusion Inorganic element Ash size distribution | S-35 | 381 | |
X$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c?7$?$J%U%'!<%:$X?J2=$9$k%^%$%/%m2=3X%W%m%;%95;=Q!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B;J2q(B $B>.Ln(B $BEX(B) | |||||
X301 | [$BE8K>9V1i(B] $BBQ9b299b05%^%$%/%m%j%"%/%?!<$rMQ$$$?9b8zN(J* | microreactor high-pressure and high-temperature | S-33 | 197 | |
(9:40$B!A(B10:40)$B!!(B($B:BD9(B $B@DLZ(B $B@kL@(B) | |||||
X303 | CFD$B$H(BPOD$B$rMQ$$$?8zN(E*$J%^%$%/%m%j%"%/%?@_7WK!$N3+H/(B | Microreactor design CFD simulation Proper Orthogonal Decomposition(POD) | S-33 | 350 | |
X304 | $B%^%$%/%m%j%"%/%?$rMxMQ$7$?%P%C%AH?1~%W%m%;%9$K4X$9$k9M;!(B | batch reactor residence time multiphase reaction | S-33 | 1020 | |
X305 | $B5$1U8G:.AjH?1~$K$*$1$k%J%s%P%j%s%0%"%C%W$r;X8~$7$?%^%$%/%m%j%"%/%?!<@_7W(B | microreactor hydrogen peroxide MEMS | S-33 | 714 | |
(10:40$B!A(B11:20)$B!!(B($B:BD9(B $BIpF#(B $BL@FA(B) | |||||
X306 | $B%(%C%A%s%0%"%k%_%K%&%`$rMQ$$$?%^%$%/%m%j%"%/%?!<$N3+H/(B | etching aluminium micro reactor methanol steam reformer | S-33 | 510 | |
X307 | $B%^%$%/%m%A%e!<%VFbJI$X$NM[6K;@2=(B | microreactor anodic oxidation tubular reactor | S-33 | 673 | |
(11:20$B!A(B12:00)$B!!(B($B:BD9(B $B0f>e(B $BJ~Li(B) | |||||
X308 | TiO2$BJ4Kv$r8GDj2=$7$?5$1U%9%i%0N.:Y4IH?1~4o$K$h$k%a%A%l%s%V%k!<$NJ,2r(B | immobilized photocatalyst narrow tubular reactor slug flow | S-33 | 588 | |
X309 | $B9bIU2C2ACM2=9gJ*9g@.$N$?$a$NB?AjN.$rMQ$$$?A*BrE*8w?(G^;@2=!&4T85%W%m%;%9(B | Microreactor Photocatalyst Numbering Up | S-33 | 1011 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B>>2<(B $B7D | |||||
X313 | $B@8BN?(G^C4;}%^%$%/%m%j%"%/%?!<$rMxMQ$7$?%"%_%N;@9g@.(B | microreactor mesoporous silica theanine | S-33 | 912 | |
X314 | $B%^%$%/%mGH$N6I=j2CG.8z2L$rMxMQ$7$?1rF,%+%C%W%j%s%0H?1~$N<}N(8~>e(B | Microwave Coupling reaction Local heating | S-33 | 341 | |
X315 | $B5$1U%^%$%/%m%9%i%0%U%m!<$rMxMQ$9$k%T%k%S%s;@%(%9%F%k@=B$%W%m%;%9$N%9%1!<%k%"%C%W8!F$(B | gas-liquid slug flow microreactor oxidative dehydrogenation | S-33 | 258 | |
(14:00$B!A(B15:00)$B!!(B($B:BD9(B $BIY3_(B $B@9E5(B) | |||||
X316 | $B%^%$%/%m%j%"%/%?!<$rMQ$$$?Cf6u7?%]%j%$%_%I%J%NN3;R$NO"B3:n@=(B | polyimide hollow nanoparticle microreactor | S-33 | 195 | |
X317 | $B%^%$%/%m%j%"%/%?!<$rMQ$$$?B?9&@-G[0L9bJ,;R$N%J%NN3;R2=$H@8@.N3;R$NFC@-(B | microreactor nanoparticle porous coordination polymer | S-33 | 734 | |
X318 | $B%^%$%/%mN.O)$rMQ$$$?C1J,;61UE)Fb$K$*$1$k>=@O5sF0(B | Microfluidic crystallization lysozyme monodisperse droplets | S-33 | 509 | |
(15:00$B!A(B16:00)$B!!(B($B:BD9(B $BKR(B $BBYJe(B) | |||||
X319 | $BFs=E1_4I7?%^%$%/%m%j%"%/%?$K$h$kC1J,;6%^%s%,%s;@%j%A%&%`N3;R$N9g@.(B | Lithium manganese oxide microreactor alkoxide | S-33 | 365 | |
X320 | $B;0=E4I%^%$%/%m%j%"%/%?$K$h$k%J%N%5%$%:$NC1J,;6%A%?%s;@%P%j%&%`N3;R$N9g@.(B | barium titanate microreactor alkoxide | S-33 | 363 | |
X321 | $B29EY%W%m%U%!%$%k$,(BZnSe$B%J%NN3;R$N7k>=9=B$$KM?$($k1F6A(B | Temperature profile control microreactor structure control | S-33 | 952 | |
(16:00$B!A(B16:40)$B!!(B($B:BD9(B $BLZKs(B $B8w@5(B) | |||||
X322 | Combinatorial synthesis of Copper nanoparticles for ink-jet application | Copper nanoparticles ink-jet combinatorial synthesis | S-33 | 711 | |
X323 | $B>WFMJ.N.K!$K$h$k(BBaSO4$B$N9bHfI=LL@Q2=(B | Impinging jet BET surface area BaSO$4$ | S-33 | 576 | |
XB$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c0!NW3&!&D6NW3&N.BN5;=Q$K$h$k%0%j!<%s%$%N%Y!<%7%g%s!d(B | |||||
(9:40$B!A(B10:20)$B!!(B($B:BD9(B $B:4F#(B $B9d;K(B) | |||||
XB303 | $BD6NW3&(BCO2$B$rMQ$$$?B?9&e$X$N6bB0HyN3;RC4;}$K$*$1$kI=LL=hM}$N1F6A(B | supercritical fluid metal precipitates porous carbon | S-43 | 577 | |
XB304 | $BD6NW3&Fs;@2=C:AGCf$G$N%U%CAG7O%]%j%^!<$N9g@.(B | Supercritical carbon dioxide Polymerization fluoropolymer | S-43 | 581 | |
(10:20$B!A(B11:00)$B!!(B($B:BD9(B $B2,Eg(B $B$$$E$_(B) | |||||
XB305 | Microwave-Hydrothermal Method for Reactive Extraction of Low-Molecular Weight Fucoidan from Substandard Seaweeds | Hydrothermal Microwave Seaweeds | S-43 | 182 | |
XB306 | $BG.?e$K$h$k%U%3%$%@%s$N2C?eJ,2r(B | fucoidan hydrothermal hydrolysis | S-43 | 453 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BEOn5(B $B8-(B) | |||||
XB307 | $BG.?e>r7o2<$K$*$1$k%0%k%3!<%9$+$i$N(B5-HMF$B$N@8@.B.EY(B | hydrothermal 5-Hydroxymethyl-2-furaldehyde reaction rate | S-43 | 671 | |
XB308 | $B9b299b05?eCf$K$*$1$k%0%j%;%j%s$N8GBN;@?(G^H?1~(B | Sub- and supercritical water Solid acid catalyst Glycerol | S-43 | 56 | |
XB309 | $B%P%$%*%G%#!<%<%k@=B$$K$h$jI{@8$9$k%0%j%;%j%sGQ4~J*$+$i$N%+%j%&%`=|5n%W%m%;%9$N3+H/(B | Glycerol Acrolein Supercritical Water | S-43 | 202 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $BNkLZ(B $BL@(B) | |||||
XB313 | $B%F%H%i%U%'%K%k%]%k%U%#%j%s6bB0:xBN$N?eG.9g@.(B | hydrothermal organometallic porphyrin | S-43 | 165 | |
XB314 | $B%0%k%3!<%9$N?eG.EE2r$*$h$S<><0;@2=H?1~7PO)$*$h$SH?1~5!9=$N2rL@(B | hydrothermal electrolysis wet oxidation glucose | S-43 | 908 | |
XB315 | $B?eG.=hM}$K$h$k%S!<%H%U%!%$%P!<$+$i$N%"%i%S%N%*%j%4E|@8@.(B | hydrothermal biomass beet pulp | S-43 | 984 | |
(14:00$B!A(B15:00)$B!!(B($B:BD9(B $B:4!9LZ(B $BK~(B) | |||||
XB316 | $B?eG.E|2=$K$h$kGONk$7$gECJ4@=B$;D^V$N%(%?%N!<%kJQ495;=Q$N3+H/(B | hydrothermal ethanol fermentation potato starch | S-43 | 651 | |
XB317 | $B4uGv;@?eMO1U$NG.?e>r7o2<$*$1$k%]%F%H%Q%k%W$NE|2=(B | hydrothermal potato pulp saccharification | S-43 | 904 | |
XB318 | $B0!NW3&>r7o2<$G$N%j%0%K%s$N2C?eJ,2r$K$h$k | lignin hydrolysis depolymerization | S-43 | 545 | |
(15:00$B!A(B16:00)$B!!(B($B:BD9(B $B@n?,(B $BAo(B) | |||||
XB319 | $B0!NW3&?e$K$h$kLZ ($B;:Am8&!&%3%s%Q%/%H2=3X%7%9%F%`8&5f%;%s%?!<(B) $B!{(B($B@5(B)$BBg@n86(B $BN5?M(B $B!&(B | subcritical water biomass lignin | S-43 | 977 | |
XB320 | $B | Biomass Carbonization Hot-compressed water | S-43 | 1000 | |
XB321 | $B%j%0%N%/%l%>!<%k$N?eJ,;6@-8~>e$H?eG.H?1~$X$N8z2L(B | lignophenol hydrothermal conversion monophenol | S-43 | 1013 | |
XD$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c0!NW3&!&D6NW3&N.BN5;=Q$r;Y$($k:G?7$N4pACJ*@-8&5f!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B;J2q(B $B8E20(B $BIp(B) | |||||
XD301 | [$BE8K>9V1i(B] $BD6NW3&Fs;@2=C:AG$KBP$9$kM-5!6bB0:xBN$NMO2rFC@-(B:$B8=>u$H2]Bj(B | supercritical fluid solubility functional material | S-42 | 346 | |
(9:40$B!A(B11:00)$B!!(B($B:BD9(B $B9b66(B $BCR51(B) | |||||
XD303 | $BFs@.J,:.9gN.BN$NNW3&E@6aK5$K$*$1$k2a>j%(%s%?%k%T!<$NFC0[E*5sF0$NM=B,(B | excess enthalpy supercritical fluid PY integral equation | S-42 | 796 | |
XD304 | MD$BK!$K$h$k9b299b05%a%?%N!<%k?eMO1U$N6I=jE*MO1U9=B$$N2r@O(B | Molecular dynamics simulation dielectric constant solution structure | S-42 | 821 | |
XD305 | $B3h@-C:$X$ND6NW3&(BCO2-VOC$B:.9g7O5[CeJ?9U$NB,Dj$H?d;;(B | Supercritical carbon dioxide Adsorption equlibria Activated carbon | S-42 | 215 | |
XD306 | Solubility and SLVE prediction for organic compounds in CO2 with COSMO method | Supercritical CO2 solubility Solid-liquid-vapor equilibrium | S-42 | 342 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B>>ED(B $B909,(B) | |||||
XD307 | $B9b05%,%9B8:_2<$K$*$1$k%K%H%m2=9gJ*$NMOM;5sF0(B | Carbon Dioxide Melting Point Nitro Compound | S-42 | 401 | |
XD308 | $BD6NW3&Fs;@2=C:AGCf$N%]%j%$%_%I%b%N%^!<$NMO2rEY$KBP$9$k%(%s%H%l!<%J8z2L(B | supercritical CO2 polyimide monomer entrainer | S-42 | 761 | |
XD309 | CO2$BKDD%%a%?%N!<%k$K$*$1$k%S%?%_%s(BK3$B$NL58B4u | diffusion coefficient gas expanded methanol Vitamin K3 | S-42 | 468 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B2<;3(B $BM52p(B) | |||||
XD313 | $B%0%k!<%W4sM?(BPC-SAFT$B$rMQ$$$?%]%j%^! | CO2 Solubility Polymer PC-SAFT | S-42 | 697 | |
XD314 | SAFT-VR$B$K$h$kFs;@2=C:AG$r4^$`(B2$B@.J,7O9b055$1UJ?9U$N?d;;(B | SAFT-VR carbon dioxide vapor-liquid equilibria | S-42 | 118 | |
XD315 | $BFs;@2=C:AG(B+$B?];@%(%A%k7O$N9b052a>j%(%s%?%k%T!<$NB,Dj$HAj4X(B | excess enthalpy high pressure carbon dioxide | S-42 | 835 | |
(14:00$B!A(B15:20)$B!!(B($B:BD9(B $BM30f(B $BOB;R(B) | |||||
XD316 | $BD6NW3&Fs;@2=C:AGCf$N6bB0:xBN$NG.J,2rB.EY$NB,Dj(B | carbon dioxide metal comlex thermal decomposition | S-42 | 494 | |
XD317 | $BD6NW3&(BCO2$B$KBP$9$kGr6b%"%;%A%k%"%;%H%J!<%H:xBN$N3H;678?t$NB,Dj$HAj4X(B | diffusion coefficient supercritical carbon dioxide metal complex | S-42 | 887 | |
XD318 | $BFs;@2=C:AGJ70O5$2<$K$*$1$k%]%j%"%/%j%k;@$N%,%i%9E>0\29EY$N05NO0MB8@-(B | Supercritical carbon dioxide glass transition temperature plasticization | S-42 | 919 | |
XD319 | $B%^%$%/%m%A%c%M%k$rMQ$$$?9b299b05?eMO1U$NA4<+F0(BpH$BB,Dj%7%9%F%`$N3+H/(B(2) | high-temperature and high-pressure aqueous solution automatic measurement system pH | S-42 | 110 | |
(15:20$B!A(B16:20)$B!!(B($B:BD9(B $BF+(B $B5f(B) | |||||
XD320 | $B9b299b05?eCf$K$*$1$kN2;@1v$NMO2rEY$NB,Dj(B | solubility sulfate aqueous solution | S-42 | 518 | |
XD321 | $B0!NW3&?e$K$h$k%9%/%m!<%9J,2r$K5Z$\$99b(BpH$B$N1F6A(B | subcritical-water hydrothermal sucrose | S-42 | 928 | |
XD322 | $B0[$J$kAj5sF0%?%$%W$K$h$k9b299b05?e(B+$BC:2=?eAG:.9gL}(B3$B@.J,7O$NAjJ?9U$NB,Dj(B | sub- and supercritical water hydrocarbon phase behavior | S-42 | 925 | |
Z$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c%P%$%*5;=Q$K$h$k%0%j!<%s%$%N%Y!<%7%g%s!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B | |||||
Z301 | Determination of the kinetic parameters for hydrothermal pretreatment of water hyacinth in a continuous flow reactor | hydrothermal pretreatment lignocellulosics | S-37 | 280 | |
Z302 | $B9b8zN(%P%$%*%(%?%N!<%k@=B$5;=Q3+H/(B-$B05:q!A>x
| bioethanol cellulose ethanol pretreatment | S-37 | 310 | |
Z303 | $B9b8zN(%P%$%*%(%?%N!<%k@=B$5;=Q3+H/(B-SSCF$B$N$?$a$NE|2=H/9Z5;=Q(B- | Bioethanol cellurose ethanol SSCF | S-37 | 14 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B>>K\(B $BF;L@(B) | |||||
Z304 | $B%b%8%e!<%k@QAX%G%6%$%s$5$l$??M9)%;%k%m%=!<%`$NH?1~B.EYO@2r@O(B | Cellulase nanoparticle biomass | S-37 | 563 | |
Z305 | $B%;%k%m!<%9$N9ZAGE|2=$K$*$1$k9ZAG$NAj>h8z2L(B | cellulose enzyme biomass | S-37 | 640 | |
Z306 | $B%;%k%m!<%9$N9ZAGE|2=$K$*$1$k9ZAG5[Ce5sF0(B | cellulose enzyme biomass | S-37 | 687 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BJ]C+(B $BE5;R(B) | |||||
Z307 | $B%P%$%*%(%?%N!<%k:.9gG3NA$+$i$N%(%?%N!<%k$H%,%=%j%s$NKlJ,N%(B | bio-ethanol membrane separation pervaporation | S-37 | 945 | |
Z308 | Solvothermal Synthesis of Ethyl tert-butyl Ether from$B!!(BLower Alcohols Under Microwave Irradiation | Solvothermal Microwave ETBE | S-37 | 181 | |
Z309 | $B | bioethanol seaweed saccharification | S-37 | 247 |