$B:G=*99?7F|;~!'(B2013-02-12 18:58:58
Ta-oxide catalysts
(1$B7o(B) | ||||
---|---|---|---|---|
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
436 | Nanoparticled Metal Oxides Electrocatalysts Based
on Group IV or V for PEFC Cathodes.
| 9-e | PEFCs Oxygen reduction reaction Ta-oxide catalysts | 12/10 13:36:01 |
tandem DDS
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
297 | $B%$%s%/%8%'%C%H%W%j%s%?$rMQ$$$?6Q0l7BHyN3;R$N:n(B
$B@=$HFs=E(BDDS$B$X$N1~MQ$K8~$1$?4pAC8!F$(B
| 12-f | inkjet printer microparticle tandem DDS | 12/9 20:38:46 |
tar
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
110 | $B%P%$%*%^%9?e>x5$%,%92=%W%m%;%9$NI>2A(B
| 9-e | gasification biomass tar | 12/6 08:28:10 |
tar recovery
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
709 | $B@PC:$H$N:.>FH/EE$N$?$a$NLZ2A(B
| 13-g | carbonization pyrolysis tar recovery | 12/10 20:06:22 |
Tar reforming (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
91 | Low temperature reforming of biomass tar during
catalytic gasification
| 9-c | Biomass Tar reforming Limonite ore | 12/5 13:10:51 |
Taylor dispersion method (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 1-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
163 | CO2$BKDD%%a%?%N!<%kCf$K$*$1$k%S%?%_%s(BK3$B$N3H(B
$B;678?t$NB,Dj(B
| 1-a | Taylor dispersion method Diffusion coefficient CO2 expanded methanol | 12/6 21:07:42 |
Taylor flow (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
678 | $B:Y4IFb$N(BTaylor flow $B$rMQ$$$?%7%j%+N3;R$NO"B39g(B
$B@.(B
| 5-e | Taylor flow Silica synthesis Continuous operation | 12/10 19:08:34 |
Taylor-Couette flow reactor (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
611 | $B%F%$%i! | 5-e | Taylor-Couette flow reactor process intensification starch hydrolysis | 12/10 17:41:06 |
TCA cycle (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
575 | $B%j%]%=!<%`Kl>e$K$*$1$k%/%(%s;@2sO)4XO"9ZAG$NH?(B
$B1~@)8f(B
| 7-a | Membranome TCA cycle Aconitase | 12/10 17:04:13 |
technical innovation (3$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-2 (3$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
439 | [$B0MMj9V1i(B]$B2=3X9)3X2q$,Ds6!$9$k2]Bj2r7h7?%3%s%=!<(B
$B%7%"%`(B
| F-2 | industrial-academic cooperation technical innovation problem solution | 12/10 13:37:59 |
462 | [$B0MMj9V1i(B]$B5~ETBg3X$G$N;:3XO"7H!A%^%$%/%m2=3X@8(B
$B;:8&5f%3%s%=!<%7%"%`!A(B
| F-2 | industrial-academic cooperation technical innovation problem solution | 12/10 14:15:25 |
490 | [$B0MMj9V1i(B]$B%9%Q%$%i%k%"%C%W7?;:3XO"7H!!!]ElKLBg3X(B
$B$ND6NW3&5;=Q$rNc$H$7$F!](B
| F-2 | industrial-academic cooperation technical innovation open innovation | 12/10 14:56:43 |
Temperature change method (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-h (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
401 | $B2~NI:`NA29EYJQ2=K!$rMQ$$$?EIKl$N@V30@~4%AgB.EY(B
| 4-h | Coated film Temperature change method Infrared drying | 12/10 12:33:18 |
402 | $B0[ | 4-h | Coated film Temperature change method Drying rate | 12/10 12:34:16 |
Temperature Fluctuation (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
258 | $BG.HhO+I>2A$N$?$a$N9bDc29N.BN9gN.It$K$*$1$kN.BN(B
$B$H9=B$$N29EYJQF0$N(BLES$B2r@O(B
| 2-a | Thermal Fatigue Temperature Fluctuation Large Eddy Simulation (LES) | 12/8 15:55:09 |
temperature polarization
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
579 | $B29EY:9Kl>xN1$K$*$1$kKl8|$5$N:GE,CM(B
| 4-a | membrane distillation desalination temperature polarization | 12/10 17:08:46 |
temperature swing adsorption (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
562 | $BFsN.BNHyN32=K!$rMQ$$$?4629@-%2%kN3;R$N:n@=$H6b(B
$B%$%*%s$N29EY%9%$%s%05[Ce%W%m%;%9$N9=C[(B
| 4-e | N-isopropylacrylamide gel beads temperature swing adsorption Au(III) ion | 12/10 16:44:26 |
temperature-responsive
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
487 | $B%S%K%k%"%_%s4^M-4629@-%]%j%^!<$+$i@.$k(BCO2$B5[(B
$B<}1U$ND4@=$HI>2A(B
| 12-e | CO2 absorption Vinylamine temperature-responsive | 12/10 14:47:15 |
temperature-responsive nanogel particles (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
618 | $BAjE>0\7?%J%N%2%kN3;R$N(BCO2$B5[<}MFNL8~>eJ}K!$N8!(B
$BF$(B
| 12-e | temperature-responsive nanogel particles CO2 amine | 12/10 17:49:24 |
Ternary system (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
12 | 3$B | 4-c | Ternary system Energy-saving distillation system Energy conservation | 11/15 12:03:00 |
Tetrabromosilane (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-e (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
347 | $BN.DLH?1~7O$G$N%F%H%i%V%m%b%7%i%s$N?eAG2=C&%V%m(B
$B%b2=H?1~(B
| 13-e | Tetrabromosilane Tribromosilane Hydrodebromination | 12/10 10:47:23 |
358 | $B%H%j%V%m%b%7%i%s(B-$B%F%H%i%V%m%b%7%i%s:.9gJ*$rMQ(B
$B$$$?B?7k>=(BSi$B@O=P(B
| 13-e | Tribromosilane Tetrabromosilane Chemical Vapor Deposition | 12/10 10:56:00 |
the hollow-fiber membrane (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
140 | $BCf6u;eKl7?;0 | 7-e | the hollow-fiber membrane three dimensional cell culture hepatocyte | 12/6 15:45:45 |
the Sabatier reaction (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
480 | JAXA$B$K$*$1$kFs;@2=C:AG4T85?(G^$N3+H/(B
| 13-g | reduction of carbon dioxide the Sabatier reaction ruthenium catalyst | 12/10 14:41:01 |
The SCEJ Award for Outstanding Women's Activity
(2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 0-g (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
808 | [$B=w@->^(B]$B2=3X9)3X2q=w@->^^9V1i(B-$B%j%]%=!<%`$K(B
$B$h$k$,$s<#NE(B
| 0-g | The SCEJ Award for Outstanding Women's Activity
| 12/25 18:50:52 |
809 | [$B=w@->^(B]$B2=3X9)3X2q=w@->^^9V1i(B
| 0-g | The SCEJ Award for Outstanding Women's Activity
| 12/25 18:50:52 |
The SCEJ Research Achievement Award
(3$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 0-b (3$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
797 | [$B8&5f>^(B]$B%^%/%m$*$h$S%_%/%mJ*@-$K4p$E$/5!G=@-:`(B
$BNA9g@.$*$h$SJ,N%%W%m%;%93+H/(B
| 0-b | The SCEJ Research Achievement Award
| 12/25 18:50:46 |
798 | [$B8&5f>^(B]$B%Z%W%A%I%"%l%$$rMQ$$$?C;:?5!G=@-%Z%W%A(B
$B%I$NC5:w$H5!G=2rL@$K4X$9$k8&5f(B
| 0-b | The SCEJ Research Achievement Award
| 12/25 18:50:48 |
799 | [$B8&5f>^(B]$BG3NAEECS:`NA$*$h$SG3NAEECS$K$*$1$k%7%9(B
$B%F%`@_7W$K4X$9$k8&5f(B
| 0-b | The SCEJ Research Achievement Award
| 12/25 18:50:50 |
The SCEJ Society Award
(2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 0-a (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
795 | [$B3X2q>^(B]$BD6NW3&?eH?1~$K4X$9$k8&5f(B
| 0-a | The SCEJ Society Award
| 12/25 18:50:43 |
796 | [$B3X2q>^(B]$B@PC:!&=E | 0-a | The SCEJ Society Award
| 12/25 18:50:44 |
The SCEJ Technical Achievement Award
(3$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 0-d (3$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
805 | [$B5;=Q>^(B]$BBg2hLL(BLCD$B%F%l%SMQJP8wHDJ]8n%U%$%k%`$N9bIJ(B
$B | 0-d | The SCEJ Technical Achievement Award
| 12/25 18:50:51 |
806 | [$B5;=Q>^(B]$B2F5Q%7%9%F%`$N | 0-d | The SCEJ Technical Achievement Award
| 12/25 18:50:51 |
807 | [$B5;=Q>^(B]$BD6NW3&(BCO2$B$rMQ$$$?%(%"%U%#%k%?:F@85;(B
$B=Q$N | 0-d | The SCEJ Technical Achievement Award
| 12/25 18:50:52 |
The SCEJ Young Investigator Researcher Award
(5$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
800 | [$B8&5f>)Ne>^(B]$B7V8wBNHyN3;R:`NA$N9=B$2=$HH/8wFC@-(B
$B$N@)8f$K4X$9$k8&5f(B
| 12-k | The SCEJ Young Investigator Researcher Award
| 12/25 18:50:50 |
801 | [$B8&5f>)Ne>^(B]$B4pHWI=LL2~ | 7-g | The SCEJ Young Investigator Researcher Award
| 12/25 18:50:50 |
802 | [$B8&5f>)Ne>^(B]$B6bB0%J%NN3;R$NI=LLHoJ$=hM}$K$h$k?((B
$BG^5!G=8~>e$K4X$9$k8&5f(B
| 5-a | The SCEJ Young Investigator Researcher Award
| 12/25 18:50:50 |
803 | [$B8&5f>)Ne>^(B]$B%\%H%`%"%C%W%"%W%m!<%A$K$h$k5!G=@-(B
$B%?%s%Q%/ | 7-a | The SCEJ Young Investigator Researcher Award
| 12/25 18:50:51 |
804 | [$B8&5f>)Ne>^(B]AFM$B$K$h$kN3;RJ*@-I>2A$H$=$l$rMxMQ(B
$B$7$?<><0J,5i%W%m%;%9$N3+H/(B
| 2-f | The SCEJ Young Investigator Researcher Award
| 12/25 18:50:51 |
Theophylline microparticles
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
716 | $B%^%$%/%m6u4VFb$ND6NW3&IOMOG^>=@O$K$h$k%F%*%U%#(B
$B%j%sN3;RAO@=$KBP$9$kMO1UG;EY$N1F6A(B
| 8-e | Supercritical antisolvent crystallization Micro-space Theophylline microparticles | 12/10 20:26:23 |
Thermal behavior
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
753 | $B%;%k%m!<%9(B/$B;@2=F<(B(II)$B:.9gJ*$NH/G.5sF02r@O(B
| 5-g | Cellulosic biomass copper(II) oxide Thermal behavior | 12/10 21:25:38 |
thermal conductivity (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
101 | $B%J%NN.BN$NG.EAF3N($K1F6A$9$k%+!<%\%s%J%N%A%e!<(B
$B%V$N6E=8>uBV$NDjNLE*I>2A(B
| 12-d | carbon nanotube thermal conductivity nanofluids | 12/5 16:38:20 |
thermal decomposition (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
136 | $BG.J,2r$H?(G^H?1~$rAH$_9g$o$;$?GQ%W%i%9%A%C%/$N(B
$BL}2=(B
| 5-a | thermal decomposition catalytic reaction waste plastic | 12/6 14:52:45 |
Thermal energy storage
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
309 | Na2S$B?eOBH?1~$rMxMQ$9$k2=3XC_G.J#9g:`NA$N3+H/(B
| 9-b | Chemical thermal energy storage Sodium sulphide hydrate Thermal energy storage | 12/9 23:47:47 |
Thermal Fatigue (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
258 | $BG.HhO+I>2A$N$?$a$N9bDc29N.BN9gN.It$K$*$1$kN.BN(B
$B$H9=B$$N29EYJQF0$N(BLES$B2r@O(B
| 2-a | Thermal Fatigue Temperature Fluctuation Large Eddy Simulation (LES) | 12/8 15:55:09 |
Thermal plasma (3$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 3-b (2$B7o(B), 12-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
167 | $B%m%s%0(BDC$B%"!<%/$K$h$k1UBNGQ4~J*$NJ,2r(B
| 3-b | Long Arc Thermal Plasma Liquid Waste | 12/6 23:13:50 |
234 | $B%$%s%U%i%$%HMOM;%,%i%9@=B$$KMQ$$$kB?Aj8rN.%"!<(B
$B%/$NEE6K>CLW5!9=$N2r@O(B
| 3-b | Thermal plasma Multi-phase arc Electrode erosion | 12/7 21:19:18 |
367 | $BM6F37k9g7?G.%W%i%:%^$K$h$k%"%b%k%U%!%9;@2=J*%J(B
$B%NN3;R$N9g@.(B
| 12-d | Thermal plasma Amorphous Nanoparticle | 12/10 11:06:22 |
Thermal plasma
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-2 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
316 | [$B>7BT9V1i(B]$B3W?7E*%,%i%9MOM;5;=Q(B
| F-2 | Glass melting Inflight melting Thermal plasma | 12/10 01:02:48 |
Thermal plasmas (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
324 | [$BN3;R!&N.BN%W%m%;%9It2q%7%s%]%8%&%`>^(B($B>)Ne>^(B)]
$BB?Aj8rN.%"!<%/$N9b29>l$N@)8f$K$h$k%$%s%U%i%$%H(B
$B%,%i%9MOM;$N9b8zN(2=(B
| 2-a | Thermal plasmas Multi-phase arc In-flight melting | 12/10 08:26:52 |
326 | $B%J%NC:AG:`NA9g@.$KMQ$$$k%"!<%/J|EECf$NEE6K29EY(B
$B7WB,(B
| 3-b | Thermal plasmas Electrode temperature Nano-carbon material | 12/10 08:31:48 |
Thermo-responsive polymer (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-j (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
109 | DNA$B8GDj2=J,;RG'<1%2!<%HKl$N3+H/(B
| 12-j | Thermo-responsive polymer DNA gating membrane | 12/5 22:30:32 |
Thermocapillary (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
1 | $B1UKl>e%5!<%b%-%c%T%i%j! | 2-a | Marangoni Thermocapillary Numerical Simulation | 11/12 10:13:44 |
Thermodynamic consistency lines (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 1-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
646 | $BG.NO3X7rA4@~$rMQ$$$k5$1UJ?9U$H1U1UJ?9U$N9b@:EY(B
$B?d;;(B
| 1-a | Thermodynamic consistency lines vapor-liquid equilibria liquid-liquid equilibria | 12/10 18:22:06 |
Thermodynamic properties
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 1-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
387 | $B%a%?%s(B+1,1,2,2,3,3,4-$B%X%W%?%U%k%*%m%7%/%m%Z%s(B
$B%?%s:.9g%O%$%I%l!<%H7O$NAjJ?9U4X78(B
| 1-a | Clathrate hydrate Phase equilibria Thermodynamic properties | 12/10 11:56:53 |
Thermophilic fumarase (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
38 | Development of Continuous Bioconversion System
Using Thermophilic Whole-Cell Biocatalyst
| 7-a | Thermophilic fumarase Glutaldehyde Continuous reactor | 11/29 21:20:41 |
thermosensitive polymer (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-j (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
554 | $BFsCJ;E9~$_%U%j!<%i%8%+%k6&=E9g$K$h$k4629@-6&=E(B
$B9g%]%j%^!<$N9g@.(B
| 12-j | thermosensitive polymer two-step free radical copolymerization N-isopropylacrylamide | 12/10 16:38:01 |
Thermosensitive polymer gel (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
574 | $BD62;GH$rMQ$$$?29EY46 | 12-e | Thermosensitive polymer gel Ultrasound irradiation Production of particles | 12/10 17:02:49 |
thermosensitivity
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
475 | $B4^CbAGB?:BG[0L;R(BTPEN$BM6F3BN2M669bJ,;R%2%k$K$h$k(B
$B=E6bB0J,N%(B
| 4-e | polymer gels nitrogen-donor ligands thermosensitivity | 12/10 14:34:10 |
thin film (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
426 | $B5$8G86NA$NF1;~6!5k$K$h$kJ#9gKl$N9g@.(B
| 5-h | thin film nanoparticle composite material | 12/10 13:20:31 |
thin films (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
429 | $B%J%N%(%"%m%>%kN3;R$N:.9gBO@Q$K$h$kGvKl$N7A@.(B
| 5-h | nanoparticles thin films porous | 12/10 13:27:41 |
thioaluminate
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-k (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
386 | $B?75,(B(Ba,Sr)-Al-S$B7O%A%*%"%k%_%M!<%H$NC5:w$H(BEu2+
$BIj3h$K$h$kH/8wFC@-I>2A(B
| 12-k | phosphor thioaluminate | 12/10 11:56:50 |
Third liquid phase
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
603 | $B1U(B-$B1U(B-$B1U7O;0AjJ,N%B%?J$N$?$a$N8rN.EE3&A`:n$,?((B
$BG^Aj$NH?1~5sF0$K5Z$\$91F6A(B
| 5-a | Phase transfer catalysis Alternate current field Third liquid phase | 12/10 17:36:05 |
three dimensional cell culture (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
140 | $BCf6u;eKl7?;0 | 7-e | the hollow-fiber membrane three dimensional cell culture hepatocyte | 12/6 15:45:45 |
529 | $BCf6u;eKl7?;0 | 7-e | three dimensional cell culture hepatocyte CYP3A4 activity | 12/10 16:10:04 |
Three-dimensional pore structure
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-i (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
683 | 3$B | 12-i | Ordered mesoporous carbon Soft-templating method Three-dimensional pore structure | 12/10 19:17:03 |
tight junction (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
375 | $BL)Ce7k9g$r;XI8$H$7$?%3%s%U%k%(%s%H>uBV$N%R%HLV(B
$BKl?'AG>eHi:YK&$N@.=OEYI>2A(B
| 7-a | confluent state tight junction RPE cell | 12/10 11:28:08 |
Tin oxide (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
450 | $B7k>=@-;@2=%9%:%J%NN3;R$N9g@.$H=89gBN7A@.(B
| 12-d | Tin oxide Nanoparticles Assembly | 12/10 14:02:46 |
TiO$2$ (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
483 | Kinetics study of TiO2 deposition in supercritical
CO2 using Micro-/Macro-cavity method
{$BD6NW3&N.BNCf$K$*$1$k(BTiO2$BGvKlBO@Q$N%_%/%m%^%/%m(B
$B%-%c%S%F%#K!$rMQ$$$?H?1~2r@O(B}
| 8-e | Supercritical fluid deposition TiO$2$ Micro-/Macro-cavity | 12/10 14:42:53 |
TiO$2$-ZrO$2$ (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
661 | isoeugenol$B$rG[0L;R$H$7$FMQ$$$?B?9&@-(BTiO2-ZrO2
$BKl$N9=B$@)8f$H5$BNF)2aFC@-(B
| 4-a | chelate TiO$2$-ZrO$2$ gas permeation | 12/10 18:44:58 |
TiO2 (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
477 | Supercritical fluid deposition of crystallized
TiO2 with assistance of alcohol
{$B%"%k%3!<%kE:2C$K$h$kD6NW3&N.BN$rMQ$$$?7k>=@-(BTiO2$BKl7A@.(B}
| 8-e | Supercritical Fluid Deposition TiO2 Anatase | 12/10 14:35:37 |
736 | $B%A%?%K%"Kl$N9=B$JQ2=$K$h$k(BP3HT/ICBA$BM-5!B@M[EE(B
$BCS$NH/EEFC@-$X$N1F6A(B
| 9-e | organic solar cell TiO2 morphology | 12/10 21:07:34 |
TiO2 nanoparticle
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
379 | TiO2$B4^M-(BCNF$BC4BN$rMQ$$$?G3NAEECSMQ?(G^(B
| 9-a | Direct Alcohol Fuel Cell anode catalyst TiO2 nanoparticle | 12/10 11:40:46 |
Tissue engineering (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
202 | $BAH?%9)3XE* | 7-a | Tissue engineering Muscle Electric pulse stimulation | 12/7 16:26:54 |
tissue engineering
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B K-3 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
478 | [$B>7BT9V1i(B] Microporous membranes of biodegradable
polyesters for biomedical applications
| K-3 | microporous membrane biodegradable polyesters tissue engineering | 12/10 14:35:45 |
titanate nanosheets (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
516 | $B%A%?%s;@%J%N%7!<%H8w?(G^$K$*$1$k%i%a%i%a%=9=B$(B
$B$N7A@.$,5Z$\$98wJ,2r3h@-$X$N1F6A(B
| 5-a | titanate nanosheets lamellar mesostructure photocatalyst | 12/10 15:48:53 |
Titania-Zirconia oxide (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
238 | TiO2-ZrO2$B7O?(G^$K$h$k?e>x5$J70O5$2<$G$N=E(B
$B | 5-a | Heavy oil Titania-Zirconia oxide Catalytic cracking | 12/7 22:57:19 |
titanium carbide
(2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-h (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
600 | $B0[$J$k%W%i%:%^8;$K$h$k(BTi$B7O9E | 5-h | chemiacal vapor deposition film growth titanium carbide | 12/10 17:32:44 |
648 | RF$B%W%i%:%^(BCVD$BK!$K$h$k(BTiCBN$BGvKl$NDc29$G$N@=Kl(B
| 5-h | chemiacal vapor deposition film growth titanium carbide | 12/10 18:23:12 |
titanium dioxide (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
149 | Synthesis of titanium oxide nanoparticles with
a crystal growth inhibitor {$B7k>=@.D9M^@):^$rMQ(B
$B$$$?;@2=%A%?%s%J%NN3;R$N9g@.(B}
| 12-d | titanium dioxide nano-particles photodegradation | 12/6 16:44:28 |
Titanium dioxide
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
598 | $B?e>t2=$KMQ$$$k(BTiO2$B8w?(G^$NBQ5W@-(B
| 13-a | Water purification Photocatalyst Titanium dioxide | 12/10 17:31:16 |
toluene (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
116 | H2-$B%H%k%(%sJ,N%$K$*$$$F%H%k%(%s$NC&?e$NM-L5$,(BDimethoxydiphenylsilane
$BM3Mh%7%j%+Kl$X5Z$\$91F6A(B
| 4-a | silica membrane toluene chemical vapor deposition | 12/6 11:41:34 |
Transesterification (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B K-2 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
275 | [$B>7BT9V1i(B] Biodiesel Production by Utilizing
Heterogeneous Catalytic Transesterification
| K-2 | Biodiesel Transesterification Heterogeneous catalyst | 12/8 23:48:15 |
transformation (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
771 | $BM-5!2=9gJ*(BQNT$BMOG^OBJ*7k>=$N@O=P$HE>0\(B
| 12-g | solvate transformation organic compound | 12/10 21:42:29 |
transition behavior
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-j (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
373 | Transition Behaviors of Zwitterionic Betaine Polymer
and Gel
| 12-j | zwitterionic polymer betaine transition behavior | 12/10 11:19:56 |
Transparent conductive film
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
474 | $B1U%l%Y%k@)8f<00\N.=8@QK!$rMQ$$$?6bB0%J%NN3;RF3(B
$BEE%M%C%H%o!<%/9=B$$N9bB.7A@.(B
| 12-a | Convective self-assembly Network structure Transparent conductive film | 12/10 14:34:06 |
transparent film
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 11-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
535 | $B%l!<%6!<%"%V%l!<%7%g%s$K$h$kF)L@4pHD>e$X$N%+!<(B
$B%\%sGvKl$NBO@Q(B
| 11-c | laser ablation carbon transparent film | 12/10 16:16:12 |
transport (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B K-1 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
93 | [$B>7BT9V1i(B] Transport of Passive and Non-Passive
Particles in Chaotic Flow
| K-1 | transport passive chaotic flow | 12/5 13:31:05 |
Transport Phenomena (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 3-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
693 | $B9b4^?e%<%*%i%$%HN3;R= | 3-d | Transport Phenomena Numerical Simulation Zeolite-Water Regeneration | 12/10 19:35:37 |
treatment efficiency
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
568 | $BB?9&@-C4BN$NGS?e=hM}8zN((B
| 4-b | support medium activated sludge method treatment efficiency | 12/10 16:58:15 |
Tribromosilane (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-e (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
347 | $BN.DLH?1~7O$G$N%F%H%i%V%m%b%7%i%s$N?eAG2=C&%V%m(B
$B%b2=H?1~(B
| 13-e | Tetrabromosilane Tribromosilane Hydrodebromination | 12/10 10:47:23 |
358 | $B%H%j%V%m%b%7%i%s(B-$B%F%H%i%V%m%b%7%i%s:.9gJ*$rMQ(B
$B$$$?B?7k>=(BSi$B@O=P(B
| 13-e | Tribromosilane Tetrabromosilane Chemical Vapor Deposition | 12/10 10:56:00 |
triple phase boundary (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
50 | $BAGH?1~5!9=$K4p$E$/(BSOFC$B;0Aj3&LL6aK5$NI=LLH?1~!&(B
$B3H;6!&EE2Y0\F0$N?tCM2r@O(B
| 9-e | SOFC triple phase boundary microkinetic modeling | 12/2 00:33:05 |
TSV (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 11-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
363 | $B%9%Q%C%?%$%*%s%W%l!<%F%#%s%0K!$K$h$k(BCu$B%7!<%IKl(B
$B$N:n@=(B
| 11-b | Sputter-Ion-Plating TSV seed | 12/10 11:01:47 |
Tungsten carbide
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
491 | $BC:2=%?%s%0%9%F%s%J%NN3;R$N%a%?%N!<%k;@2=H?1~3h(B
$B@-I>2A(B
| 9-a | Direct Methanol Fuel Cell Anode catalyst Tungsten carbide | 12/10 14:59:05 |
Tungsten Trioxide
(1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-i (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
194 | $B8w@O=PK!$K$h$k2D;k8w1~Ez7?%Q%i%8%&%`C4;};@2=%?(B
$B%s%0%9%F%s8w?(G^$NAO@=(B
| 13-i | Photocatalyst Tungsten Trioxide | 12/7 15:32:29 |
Turbulent flow (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
211 | $B6I=j$9$Y$jB.EY$rM-$9$k5!G=@-EIKl>eMpN.$N?tCM%7(B
$B%_%e%l!<%7%g%s(B
| 2-a | Turbulent flow Functional coating film Numerical simulation | 12/7 17:34:54 |
Two-phase flows (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
321 | $BHs5e7A%d%L%9N3;R$r4^$s$@1U1UFsAjN.$ND>@\?tCM7W(B
$B;;(B
| 12-c | Non-spherical Janus particles Two-phase flows Computational fluid dynamics | 12/10 02:21:02 |
Two-phase viscoelastic fluid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-l (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
40 | $B3&LL3h@-N3;R$r4^$s$@FsAj7OG4CF@-N.BN$ND>@\?tCM(B
$B%7%_%e%l!<%7%g%s(B
| 12-l | CFD Two-phase viscoelastic fluid Surface-active particles | 11/30 01:37:03 |
two-step free radical copolymerization (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-j (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
554 | $BFsCJ;E9~$_%U%j!<%i%8%+%k6&=E9g$K$h$k4629@-6&=E(B
$B9g%]%j%^!<$N9g@.(B
| 12-j | thermosensitive polymer two-step free radical copolymerization N-isopropylacrylamide | 12/10 16:38:01 |