$B:G=*99?7F|;~!'(B2020-09-26 15:59:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
Solid Oxide Fuel Cell | 6$B7o(B | ||
carbon nanotube | 5$B7o(B | ||
Polymer electrolyte fuel cell | 5$B7o(B | ||
Electrolysis | 3$B7o(B | ||
Hydrogen production | 3$B7o(B | ||
Hydrogen storage | 3$B7o(B | ||
solar cell | 2$B7o(B | ||
Magnesium hydride | 2$B7o(B | ||
Ether-free aromatic polymer | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
52 | A process design for hydrogen production by combining tar reforming and a chemical looping process for char conversion | Process design Hydrogen production Biomass | P |
170 | PEM$B8|$_$H(BMPL$BM-L5$,9b291?E>(BPEFC$BC1%;%k$N3F | PEFC PEM thickness MPL | P |
278 | Energy efficient H2 production via NH3 thermolysis using Ni-coated hot filament | ammonia thermolysis hydrogen production hot filament | P |
279 | $B6bB0?eAG2=J*$X$N?eAGN.DL$K$h$kG.6!5k$H?eAGJ|=P@)8f$N%7%_%e%l!<%7%g%s(B | Magnesium hydride Hydrogen storage Heat transfer | P |
339 | $B9b8zN(%"%k%+%j?eEE2r$N$?$a$N%+!<%\%s%J%N%A%e!<%VKl%Y!<%9;0 | Carbon nanotube Hydrogen production alkaline water electrolysis | P |
353 | $B;@2=J*%$%*%sEAF3@-;@2=J*>e$G$N%+!<%\%s%J%N%A%e!<%V9g@.$N8!F$(B | Carbon Nanotube Solid Oxide Fuel Cell | P |
418 | Mg$B$N?eAG5[B"FC@-$KBP$9$k6bB0;@2=J*$NHy:Y9=B$$*$h$S?(G^5!9=$N8!F$(B | Magnesium hydride Hydrogen storage Catalytic mechanism | P |
420 | $B?e$+$i$N;@2=E*$J(BH2O2$B9g@.$N9b8zN(2=$rL\;X$7$?(BBiVO4$B8wEE6K$X$N%"%k%+%jEZN`6bB0$NF3F~(B | Photoelectrochemistry Hydrogen Peroxide Anode Reaction | P |
437 | $B8GBN%j%s;@1vEE2r | electrolysis intermediate temperature solid phosphate | O |
454 | $B2=3X5[CeK!$rMQ$$$F$NG3NAEECS?(G^$K$*$1$kC4BN8z2L$N8&5f(B | fuel cell catalyst chemisorption support effect | P |
483 | $BC_G.$K$h$kJQF0@-:F%(%M$N=PNOD4@0(B:$B@=;f9)>l$HIwNOG.H/EE$N%i%$%U%5%$%/%kI>2A(B | Simulation of paper production Life cycle assessment Greenhouse gas | O |
488 | $B;@2=J*%$%*%s!&EE;R:.9gEAF3BN$N0[Aj3&LL$K$*$1$kEE5$2=3XE*FC@-I>2A(B | Hetero interface Scanning probe microscopy Solid Oxide Fuel Cell | P |
494 | Ni/GDC$B$*$h$S(BNi/YSZ$BG3NA6K$r;HMQ$7$?%+!<%\%s6u5$Fs | solid oxide fuel cell secondary battery electrolysis | O |
526 | $B8GBN;@2=J*7?EE2r%;%k$rMQ$$$?%a%?%s$N;@2=E*%+%C%W%j%s%0H?1~(B | Oxidative methane coupling Ethane Ethylene | P |
541 | $B7OE}6(D4!?J,;67?%(%M%k%.!<%7%9%F%`3+H/$K8~$1$?5!3#3X=,$K$h$kEENO<{MW$N=E2s5"J,@O(B | distributed generation renewable energy machine learning | P |
542 | $B8GBN;@2=J*G3NAEECS$X$N%+!<%\%s%J%N%A%e!<%VD>@\@.D9$KBP$9$k%$%*%sEAF3@-;@2=J*$N1F6A(B | Solid oxide fuel cell Carbon nanotube oxide ion conductor | O |
548 | $BB@M[EECSF0:n86M}$H5!3#3X=,$NJ;MQ$K$h$k1F$r4^$a$?%;%k$NH/EEM=B,%b%G%k$N3+H/(B | Energy system Solar cell Simulation | P |
589 | $B?eAGH/@8$rL\;X$7$?%j%]%=!<%`(B/$BC1AX%+!<%\%s%J%N%A%e!<%V(B/$B%U%i%m%G%s%I%m%s8w?(G^J#9g:`NA$NI>2A(B | liposome carbon nanotube photocatalyst | P |
597 | Solar-light-driven Water Splitting for Hydrogen Evolution by A Novel TiO2 Based Photocatalyst | Solar-light-driven P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst Water splitting H2 generation | P |
611 | $BG3NA3H;6$r9MN8$7$?D>@\%.;@1vMO1U7?8GBN%"%k%+%jG3NAEECS%b%G%k$N9=C[(B | Direct formate fuel cell Mathematical model Fuel transport | P |
615 | $B?eAG!&%"%;%H%"%k%G%R%IF1;~@=B$EE5$2=3X%W%m%;%9$K$*$1$kA*Br@-(B | electroorganic synthesis selectivity acetaldehyde | O |
632 | $BM%$l$?;@AGH/@8H?1~3h@-$r<($9%"%k%+%j?eEE2rMQE47O%"%N!<%I?(G^$N3+H/(B | oxygen evolution reaction iron-based electrocatalyst alkaline water splitting | O |
636 | $B7k>=%7%j%3%sKl$rMQ$$$?%U%l%-%7%V%kM-5!(B/$BL55!%X%F%m@\9gB@M[EECS$N3+H/(B | solar cell mono-crystalline Si film PEDOT:PSS | P |
638 | $B8GBN9bJ,;RG3NAEECS$NJ,6K6J@~$N;@AGJ,050MB8@-$+$i$NL5 | polymer electrolyte fuel cell analysis method dimensionless moduli | O |
643 | $B9b%9%k%[%s;@4pL)EY%"%$%*%N%^!<= | polymer electrolyte fuel cells pore-filling membrane chemical durability | O |
659 | $BEE2r | Solid oxide fuel cell Bilayer electrolyte Transport property | O |
692 | $B6bB0;@2=J*$rMQ$$$??eAG%(%M%k%.! | Hydrogen storage Metal oxides Steam electrolysis | P |
693 | $BGr6b%9%Q%C%??(G^$rMQ$$$?8GBN9bJ,;R7AG3NAEECS$N;@AG4T85H?1~B.EY$N29<>EY0MB8@-$NB,Dj(B | polymer electrolyte fuel cell oxygen reduction reaction platinum-sputtered electrode | P |
698 | $B8GBN;@2=J*G3NAEECS(B/$BEE2r%;%k$NJq3gE*G3NA6KH?1~%b%G%k$NDs0F$HB?JQ?t%U%#%C%F%#%s%0 | Solid Oxide Fuel Cell Kinetics modeling Langmuir-Hinshelwood | O |
701 | $BN.BNNO3XE*%-%c%S%F!<%7%g%sJ,;6K!$rMQ$$$??(G^%9%i%j!<$ND4@=$H(BPEFC$BH/EE@-G=(B | Cavitation Microbubbles Continuous Flow Process Polymer Electrolyte Fuel Cell | O |
711 | $B4D6-@-!&5;=Q7P:Q@-$K4p$E$/:F%(%MMxMQ5;=Q$NI>2A(B:$BC_EECS1gMQ?eAG@=B$$NNc(B | Electrolysis System design LCA(Life cycle assessment) | O |
717 | $B9bBQ5W%(!<%F%k%U%j! | Direct formate solid alkaline fuel cell Anion conducting membrane Ether-free aromatic polymer | P |
724 | $BEE5$2=3XE*B%?J8z2L$rMxMQ$7$?%"%s%b%K%"EE2r9g@.$NEE6K:`NA$N8!F$(B | Ammonia electrosynthesis catalyst proton conductor | P |
759 | $BIi6K%0%i%U%!%$%H$N5$Aj=$>~$K$h$k(BLIB$B$N9b29J]B8@-G=8~>e(B | lithium ion battery graphite high temperature characteristics | P |
774 | $B=[4DN.$l$rH<$&8GBN9bJ,;R7AG3NAEECS%7%9%F%`$N9b8zN(1?E>>r7o$N8!F$(B | polymer electrolyte fuel cell water management operation conditions | P |
776 | Connected Pt-Co Catalysts Possessing Chemically Ordered Structures for Improved Oxygen Reduction Performances | Polymer electrolyte fuel cell Carbon free ORR electrocatalyst | P |
798 | Thermopower Wave$B$K4p$E$$$?H/EE%G%P%$%9$K4X$9$k8&5f(B | thermopower wave carbon nanotube power generation | O |