Japanese page
SCEJ

SCEJ 54th Autumn Meeting (Fukuoka, 2023)

Program search result : machine learning : 19 programs

The preprints(abstracts) are now open (Aug. 28). These can be viewed by clicking the Paper IDs. The ID/PW sent to the Registered participants and invited persons are required.

Keywords field exact matches “machine learning”; 19 programs are found. (“Poster with Flash” presentations are double-counted.)
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
9:009:20
H101Development of machine learning model for CO2 absorption performance of blended amine solutions
(AIST) *(Reg)Fujii Tatsuya, (Reg)Kohno Yuki, (Reg)Makino Takashi, (Tokyo Tech) Sako Masami, Ishihama Keisuke, Yasuo Nobuaki, Kawauchi Susumu
CO2 absorption
machine learning
amine
ST-21445
Day 1
9:0010:40
PA117Machine learning model for predicting jet fuel fraction yield in catalytic cracking of vegetable oils
(Shinshu U.) *(Stu)Katayama Yuzuki, (Reg)Shimada Iori
catalytic cracking
sustainable aviation fuel
machine learning
SY-62563
Day 1
9:0010:40
PA123Construction of the prediction model for graphene domain size synthesized by chemical vapor deposition
(Fukuoka U.) *(Stu)Tahara Yuya, (Reg)Yoshihara Naoki, (Reg)Noda Masaru
Machine Learning
chemical vapor deposition
graphene
SY-62527
Day 1
9:209:40
H102Predicting Physical Properties of Structurally Unknown Polymers Using Spectroscopy Data
(Resonac) (Cor)Nagai Yuuki
Machine Learning
Predict
Descriptor
ST-21353
Day 1
12:4013:40
PA117Machine learning model for predicting jet fuel fraction yield in catalytic cracking of vegetable oils
(Shinshu U.) *(Stu)Katayama Yuzuki, (Reg)Shimada Iori
catalytic cracking
sustainable aviation fuel
machine learning
SY-62563
Day 1
12:4013:40
PA123Construction of the prediction model for graphene domain size synthesized by chemical vapor deposition
(Fukuoka U.) *(Stu)Tahara Yuya, (Reg)Yoshihara Naoki, (Reg)Noda Masaru
Machine Learning
chemical vapor deposition
graphene
SY-62527
Day 1
15:4016:00
H121Machine learning guided enzyme’s molecular recognition specificity conversion
(Osaka U.) *(Reg)Niide Teppei, Sugiki Sou, Mori Seiya, (Reg)Toya Yoshihiro, (Reg)Shimizu Hiroshi
enzyme design
machine learning
ST-21235
Day 1
16:4017:00
H124Applicational study of symbolic regression to exploring new materials and constructing kinetics models
(Waseda U.) *(Stu)Isoda T., Takahashi S., (WISE/Mitsubishi Chemical Group) Nakano M., (WISE) Nakajima Y., (Waseda U./WISE) Seino J.
Machine learning
Materials Informatics
Reaction Kinetics
ST-21948
Day 2
9:3011:00
PA203Prediction of the polymer gel-solvent interaction parameter χ using support vector regression
(TUAT) *(Stu·PCEF)Kamikawa Yuna, (Reg)Kitajima Teiji, (Reg)Tokuyama Hideaki
polymer gel
interaction parameter
machine learning
SY-79178
Day 2
9:3011:00
PA243Particle size control of coacervate capsules using Bayesian optimization
(Kagoshima U.) *(Stu·PCEF)Sono Nao, (NIT Miyakonojo) (Reg)Kiyoyama Shiro, (U. Miyazaki) (Reg)Shiomori Koichiro, (Kagoshima U.) (Reg)Takase Hayato, (Reg)Yoshida Masahiro, (Reg)Takei Takayuki
machine learning
microcapsule
coacervation
SY-79833
Day 2
9:3011:00
PA249Prediction Model for Polymorphs of Coated Glycine in Particle Composites Using a Taylor Continuous Crystallizer
(Doshisha U.) *(Stu)Nakamura Takumi, (Reg)Yoshida Mikio, (Reg)Shirakawa Yoshiyuki
Crystal Polymorph
Continuous Crystallization
Machine Learning
SY-79893
Day 2
9:4010:00
I203Data Science-assisted Unveiling Comprehensive Descriptors for Electrocatalytic Anodic Reaction in Water Electrolysis on Multimetal Oxides
(Tokyo Tech) *(Reg)Sugawara Yuuki, Xiao Chen, Higuchi Ryusei, (Reg)Yamaguchi Takeo
alkaline water electrolysis
electrocatalyst
machine learning
ST-23565
Day 2
9:4010:00
K203Design of high selective membranes for CO2 separation by machine learning and computational chemistry
(Kogakuin U.) *(Reg)Takaba Hiromitsu, Morisaki Kazuki, (Reg)Miyagawa Masaya
Molecular simulation
Machine learning
Porous membrane
SY-61972
Day 2
10:4011:00
H206Design of integrated upstream and downstream monoclonal antibody production processes using surrogate models
(U. Tokyo) *(Stu)Shigeyama Akinori, (Reg)Hayashi Yusuke, (Int)Badr Sara, (Reg)Sugiyama Hirokazu
Surrogate model
Machine learning
Bayesian optimization
ST-21816
Day 2
14:2014:40
J217Dynamic analysis of process operation behavior applying new informative method
(TUAT) *(Stu)Wada Tetsuya, (Reg)Yamashita Yoshiyuki
Fault detection
Machine learning
Clustering
SY-65298
Day 2
14:3016:00
PB214Investigation of reactin and mass transport performance of fuel cell catalyst layers using machine learning
(Kyushu U.) *(Stu)Kondo A., (Stu)Saito Y., Permatasari A., (Stu)Nakano K., (Reg)Inoue G.
Fuel cell
Catalyst layer
Machine learning
SY-75469
Day 3
9:009:20
T301New discoveries emerged from machine learning-assisted directed evolution of enzymes
(Tohoku U.) *(Reg)Nakazawa Hikaru, (Reg)Ito Tomoyuki, (AIST/U. Tokyo/Kitasato U.) Saito Yutaka, (Tohoku U.) Oikawa Misaki, Sato Takumi, (RevolKa) Kataoka Shiro, (Tohoku U./Riken) (Reg)Umetsu Mitsuo
Directed evolution
enzyme
Machine learning
SY-711027
Day 3
9:4010:00
T303Machine learning-based prediction of RNA modification sites by feature combination
(Kyutech) *Md Harun-Or-Roshid, (Reg)Kurata Hiroyuki
RNA
feature combination
machine learning
SY-71153
Day 3
13:2014:20
PB301[Requested talk] High-speed computing for powder mixing process using machine learning
(Osaka Metro. U.) (Stu)Kishida Naoki
Powder mixing
High-speed computing
Machine learning
HQ-1467

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 54th Autumn Meeting (Fukuoka, 2023)


© 2023 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 54th Autumn Meeting
E-mail: inquiry-54fwww4.scej.org