$B:G=*99?7F|;~!'(B2022-06-14 16:59:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
Hydrogen storage | 3$B7o(B | ||
polymer electrolyte fuel cell | 3$B7o(B | ||
Carbon nanotubes | 2$B7o(B | ||
Ammonia | 2$B7o(B | ||
Water splitting | 2$B7o(B | ||
Solar cell | 2$B7o(B | ||
electrocatalysts | 2$B7o(B | ||
Simulation | 2$B7o(B | ||
Modeling | 2$B7o(B | ||
Carbon nanotube | 2$B7o(B | ||
oxygen reduction reaction | 2$B7o(B | ||
Passivation | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
16 | $B9b29H/EE(BPEFC$BC1%;%kFb29EYJ,I[$K5Z$\$9%;%Q%l!<%?!<8|$5J}8~7A>u$N1F6A2r@O(B | PEFC Heat Transfer Analysis Separator Thickness | O |
25 | $B%l%I%C%/%9%U%m! | Redox flow battery Carbon porous electrode Active materials transport | O |
70 | Amorphous/Crystalline Heterostructure Zinc-Vanadium Oxide-Cobalt Nanosheets for Efficient Electrocatalytic Hydrogen Evolution | hydrogen evolution reaction Water splitting electrocatalysts | P |
71 | Hierarchical NiFe-LDH@MnCo2O4 electrocatalyst for oxygen evolution reaction in electrolysis of imitate seawater | Oxygen evolution reaction Water splitting electrocatalysts | P |
73 | $B0BDj!&9bMFNLFs | SiO anode Carbon nanotubes Three-dimensional electrode | O |
99 | $B%+!<%\%s%J%N%A%e!<%VKl$X$N3hJ* | lithium-sulfur battery high energy density carbon nanotube | P |
204 | $B1UBN%"%s%b%K%"EE2r$K$h$k?eAG@8@.$N$?$a$N(BRu$BC4;}%+!<%\%s%J%N%A%e!<%VKlEE6K$N3+H/(B | Carbon nanotube Ammonia electrolysis Ru nanoparticles | P |
273 | $B%W%m%H%sEAF3@-@QAX7?%;%i%_%C%/G3NAEECS$N9b8zN(%;%k@_7W$HH/EEFC@-I>2A(B | Solid oxicide fuel cell bilayer electrolyte ionic transport property | P |
276 | $BB?9&2$B%7!<%H$X$N?eAGN.DL%W%m%;%9$K$h$kG.6!5k$H?eAGJ|=P$N | Hydrogen storage Magnesium hydride Hydrogen flow process | P |
306 | Regulating the amount of oxygen vacancy in P/Ag/Ag2O/Ag3PO4/TiO2 composite for improved hydrogen evolution under solar light | Oxygen vacancy modified P/Ag/Ag2O/Ag3PO4/TiO2 Hydrogen evolution Solar light | O |
327 | $BC:AG:`NA$K$h$k?(G^E:2C(BMgH2$B$N?eAG5[J|=P%5%$%/%k0BDj@-$N8~>e(B | MgH2 Hydrogen storage Carbon materials | P |
347 | $B86;R2A7k9gK!$X$N5!3#3X=,$NE,MQ$K$h$k%Z%m%V%9%+%$%H7?%W%m%H%sEAF3BNC5:w$N8!F$(B | solid oxide fuel cell valence bond method machine learning | P |
355 | $BGvHD>uEE2r%;%k$rMQ$$$??eEE2r$K$*$1$k3$?eMxMQ$H$=$NA*Br@-@)8f(B | Seawater electrolysis Chlorine Oxygen selectivity | O |
417 | $BFs;@2=C:AG$N%"%s%b%K%"%a%?%M!<%7%g%s(B | Ammonia Methanation | O |
454 | $B%W%m%H%s7?EE2r%;%k$rMQ$$$?(BN2-H2$B$+$i$N>o05%"%s%b%K%"9g@.(B | Ammonia Electrolysis Cell | O |
529 | VRFB$B$K$*$1$kMFNLB;<:$N5!9=2rL@$*$h$SDc8:$N$?$a$N2A?tA*Br7?EE2r | vanadium redox flow battery valence selective membrane capacity loss | P |
554 | $B%$%*%s8r49K!$K$h$k(BNi/$B%X%F%m86;R%I!<%W?eAGH/@8EE6K?(G^$N9g@.(B | HER ion exchange resin non-precious metal catalyst | P |
565 | $B9b8zN(%(%A%l%s@8@.$X8~$1$?(BCO2$BEE5$2=3XE*4T85$N$?$a$N(BCu$B?(G^!&EE6K$N9=B$@)8f(B | CO2 electroreduction Cu catalyst structural control | P |
599 | $BG.J,2r$rM^$($?9bB.G.=hM}$K$h$k%Z%m%V%9%+%$%H3h@-AX$NBgN37B2=(B | Solar Cell Perovskite Grain Size | P |
602 | Modeling of the Effects of Porosity and Passivation on Porous Silicon | Porous Silicon Passivation Modeling | O |
627 | Study on Activity of Citric Acid-decorated Carbon Nanotubes for Oxygen Reduction Reaction | Oxygen reduction reaction Nitrogen doping Carbon nanotubes | O |
629 | $B1F$r4^$`B@M[EECSH/EENLM=B,$K$*$1$kF| | Energy system Solar cell Simulation | P |
630 | $B9bB.?eAG5[B"J|=P$N$?$a$N(BLaNi5-$B9bJ,;R | Hydrogen storage Metal hydride Pulverization | P |
635 | Investigating the Structural Change of PbI2-rich Perovskite Solar Cells After Storage | hole transportation material (HTM)-free perovskite solar cell perovskite self-recrystallization interface reconstruction | O |
636 | $B7P:Q:GE,2=%b%G%k$rMQ$$$?G[EELVNN0h$N7OE}@)Ls$K$h$kB@M[8wH/EE$NF3F~1F6AI>2A(B | economic optimization model distribution network substation photovoltaic power | O |
648 | $B%W%m%H%sEAF3@-L55!8GBNEE2r2A(B | Solid oxide fuel cells Proton-Conducting inorganic solid electrolyte Hydrogen permeable membranes | O |
654 | $BJ*M}%b%G%k%Y!<%9G3NAEECS%7%9%F%`%7%_%e%l!<%?3+H/(B | Fuel cell Simulation Modeling | O |
655 | $B8GBN9bJ,;R7AG3NAEECS$NEE2r | polymer electrolyte fuel cell membrane MEA | O |
656 | $B8GBN9bJ,;R7AG3NAEECS$NN.O)$H3H;6AX$K$*$1$k%^%/%m:.9g$NDj<02=(B | polymer electrolyte fuel cell flow channel macromixing | P |
658 | PEFC$B$N%+%=!<%I?(G^AXFb$NM"AwDq93$N1F6A$r9MN8$7$?;@AG4T85H?1~B.EY$N2r@O(B | polymer electrolyte fuel cell oxygen reduction reaction mass transfer resistance | P |
703 | $B5;=Q$NCO0h$X$N%^%C%A%s%0$H | open data life cycle assessment emerging technologies | O |