SCEJ

$B2=3X9)3X2qBh(B87$BG/2q(B($B?@8M(B)

$B9V1i?=$79~$_0lMw!J%7%s%]%8%&%`!&9V1iJ,N`JL!K(B


9) $B%(%M%k%.!<(B

9-e. $B?7%(%M%k%.!

$B:G=*99?7F|;~!'(B2022-06-14 16:59:01

$B$3$NJ,N`$G$h$/;H$o$l(B
$B$F$$$k%-!<%o!<%I(B
$B%-!<%o!<%I(B$B
Hydrogen storage3$B7o(B*
polymer electrolyte fuel cell3$B7o(B*
Carbon nanotubes2$B7o(B
Ammonia2$B7o(B
Water splitting2$B7o(B
Solar cell2$B7o(B
electrocatalysts2$B7o(B
Simulation2$B7o(B
Modeling2$B7o(B
Carbon nanotube2$B7o(B
oxygen reduction reaction2$B7o(B
Passivation1$B7o(B

$B$BHV9f(B$B9V1iBjL\!?H/I=$B%-!<%o!<%I(B$BH/I=7A<0(B
16$B9b29H/EE(BPEFC$BC1%;%kFb29EYJ,I[$K5Z$\$9%;%Q%l!<%?!<8|$5J}8~7A>u$N1F6A2r@O(B
($B;0=EBg1!(B) ($B@5(B)$B!{@>B<(B $B82(B$B!&(B ($B3X(B)$B2OLn(B $BK>(B$B!&(B $BK-ED(B $B63J?(B$B!&(B ($B;0=EBg(B) $B;0Eg(B $BBg5((B
PEFC
Heat Transfer Analysis
Separator Thickness
O
25$B%l%I%C%/%9%U%m!
($B72Bg1!M}9)(B) ($B@5(B)$B!{@PHt(B $B9(OB(B$B!&(B $BGr@P(B $BAT;V(B$B!&(B ($B%"%$%*%s(B) $BDMED(B $B9kI'(B$B!&(B $BIZED(B $B2FH~(B$B!&(B ($BElMN%(%s%8(B) ($B@5(B)$BCfHx(B $B8x?M(B$B!&(B ($B72BgM}9)(B) ($B3X(B)$B0f$B!&(B ($B72Bg1!M}9)(B) ($B@5(B)$BCf@n(B $B?B9%(B
Redox flow battery
Carbon porous electrode
Active materials transport
O
70Amorphous/Crystalline Heterostructure Zinc-Vanadium Oxide-Cobalt Nanosheets for Efficient Electrocatalytic Hydrogen Evolution
($B90A0BgM}9)(B) ($B3X(B)$B!{DD(B $BK((B$B!&(B ($B3X(B)Kitiphatpiboon Nutthaphak$B!&(B ($B@5(B)$B0$I[(B $BN$Ds(B$B!&(B ($B90A0BgCO0h8&(B) ($B@5(B)$B41(B $B9q@6(B
hydrogen evolution reaction
Water splitting
electrocatalysts
P
71Hierarchical NiFe-LDH@MnCo2O4 electrocatalyst for oxygen evolution reaction in electrolysis of imitate seawater
($B90A0BgM}9)(B) ($B3X(B)$B!{(BKitiphatpiboon Nutthaphak$B!&(B ($B3X(B)$BDD(B $BK((B$B!&(B ($B@5(B)$B0$I[(B $BN$Ds(B$B!&(B ($B90A0BgCO0h8&(B) ($B@5(B)$B41(B $B9q@6(B
Oxygen evolution reaction
Water splitting
electrocatalysts
P
73$B0BDj!&9bMFNLFs
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{A0(B $BCRB@O:(B$B!&(B ($B3X(B)$B6b;R(B $B7rB@O:(B$B!&(B ($BAaBgM}9)Am8&(B) ($B@5(B)$BM{(B $BKOUb(B$B!&(B ($BAaBg@h?JM}9)(B) ($B@5(B)$BLnED(B $BM%(B
SiO anode
Carbon nanotubes
Three-dimensional electrode
O
99$B%+!<%\%s%J%N%A%e!<%VKl$X$N3hJ*
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{CfA0(B $B2wEM(B$B!&(B $B5H9>(B $BM%0l(B$B!&(B ($B3X(B)$BA0(B $BCRB@O:(B$B!&(B ($B3X(B)$B6b;R(B $B7rB@O:(B$B!&(B ($BAaBgM}9)Am8&(B) ($B@5(B)$BM{(B $BKOUb(B$B!&(B ($BAaBg@h?JM}9)(B) ($B@5(B)$BLnED(B $BM%(B
lithium-sulfur battery
high energy density
carbon nanotube
P
204$B1UBN%"%s%b%K%"EE2r$K$h$k?eAG@8@.$N$?$a$N(BRu$BC4;}%+!<%\%s%J%N%A%e!<%VKlEE6K$N3+H/(B
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{5\1[(B $B$9$_$l(B$B!&(B ($B@5(B)$BLnED(B $BM%(B$B!&(B ($B@5(B)$B2VED(B $B?.;R(B
Carbon nanotube
Ammonia electrolysis
Ru nanoparticles
P
273$B%W%m%H%sEAF3@-@QAX7?%;%i%_%C%/G3NAEECS$N9b8zN(%;%k@_7W$HH/EEFC@-I>2A(B
($BElBg?7NN0h(B) ($B3X(B)$B!{Cf:,(B $B7rB@(B$B!&(B ($BEl5~%,%9(B/$B6eBg(B) ($B@5(B)$B>>:j(B $BNIM:(B$B!&(B ($BEl9)Bg(B) ($B@5(B)$BBgM'(B $B=g0lO:(B
Solid oxicide fuel cell
bilayer electrolyte
ionic transport property
P
276$BB?9&2$B%7!<%H$X$N?eAGN.DL%W%m%;%9$K$h$kG.6!5k$H?eAGJ|=P$NZ(B
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{5HED(B $B7$B!&(B ($B@5(B)$BLnED(B $BM%(B$B!&(B ($B@5(B)$B2VED(B $B?.;R(B
Hydrogen storage
Magnesium hydride
Hydrogen flow process
P
306Regulating the amount of oxygen vacancy in P/Ag/Ag2O/Ag3PO4/TiO2 composite for improved hydrogen evolution under solar light
($BC^GHBg@84D(B) ($B3X(B)$B!{(BSun Xiang$B!&(B Ming Jie$B!&(B Zhang Cheng$B!&(B ($B@5(B)Yang Yingnan
Oxygen vacancy modified P/Ag/Ag2O/Ag3PO4/TiO2
Hydrogen evolution
Solar light
O
327$BC:AG:`NA$K$h$k?(G^E:2C(BMgH2$B$N?eAG5[J|=P%5%$%/%k0BDj@-$N8~>e(B
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{IMBt(B $BJ~4u(B$B!&(B ($B@5(B)$BLnED(B $BM%(B$B!&(B ($B@5(B)$B2VED(B $B?.;R(B
MgH2
Hydrogen storage
Carbon materials
P
347$B86;R2A7k9gK!$X$N5!3#3X=,$NE,MQ$K$h$k%Z%m%V%9%+%$%H7?%W%m%H%sEAF3BNC5:w$N8!F$(B
($BEl9)Bg1~2=(B) ($B3X(B)$B!{M-2l(B $B?s98(B$B!&(B ($B3X(B)$B55ED(B $B7CM$(B$B!&(B ($B3X(B)$B:4!9LZ(B $B1MB@(B$B!&(B ($B@5(B)$BD9C+@n(B $B3>(B$B!&(B ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)$B0K86(B $B3X(B
solid oxide fuel cell
valence bond method
machine learning
P
355$BGvHD>uEE2r%;%k$rMQ$$$??eEE2r$K$*$1$k3$?eMxMQ$H$=$NA*Br@-@)8f(B
($B;38}Bg1!AO@.(B) ($B@5(B)$B!{1sF#(B $B@kN4(B$B!&(B ($B;38}Bg9)(B) $BEDCf(B $B=Y8w(B$B!&(B $B@5ED(B $B0l@.(B
Seawater electrolysis
Chlorine
Oxygen selectivity
O
417$BFs;@2=C:AG$N%"%s%b%K%"%a%?%M!<%7%g%s(B
($B9-Bg(B) ($B@5(B)$B!{@F4V(B $BEy(B$B!&(B $BJODE(B $B51(B$B!&(B $B:=K\(B $BNi;V(B$B!&(B ($B@5(B)$B5\2,(B $BM5$B!&(B ($B@5(B)$B;T@n(B $B5.G7(B
Ammonia
Methanation
O
454$B%W%m%H%s7?EE2r%;%k$rMQ$$$?(BN2-H2$B$+$i$N>o05%"%s%b%K%"9g@.(B
($BElBg1!9)(B) ($B@5(B)$B!{5FCO(B $BN4;J(B$B!&(B $BjO(B $Bt$(B$B!&(B ($B@5(B)$BF#86(B $BD>Li(B$B!&(B ($B@5(B)$BB?ED(B $B>;J?(B
Ammonia
Electrolysis Cell
O
529VRFB$B$K$*$1$kMFNLB;<:$N5!9=2rL@$*$h$SDc8:$N$?$a$N2A?tA*Br7?EE2r
($BG@9)Bg1!9)(B) ($B3X(B)$B!{?y1:(B $B6ALi(B$B!&(B ($B72Bg1!M}9)(B) ($B3X(B)$B>.H((B $BN4N<(B$B!&(B ($B@5(B)$B@PHt(B $B9(OB(B$B!&(B ($BG@9)Bg1!9)(B) ($B@5(B)$BBg66(B $B=(Gl(B
vanadium redox flow battery
valence selective membrane
capacity loss
P
554$B%$%*%s8r49K!$K$h$k(BNi/$B%X%F%m86;R%I!<%W?eAGH/@8EE6K?(G^$N9g@.(B
($B@EBg1!9)(B) ($B3X(B)$B!{=t8M(B $B915*(B$B!&(B ($B:eBg1!4p9)(B) ($B@5(B)$B;0Bp(B $B9@;K(B$B!&(B ($B@EBg1!9)(B) ($B@5(B)$B9&(B $B>;0l(B
HER
ion exchange resin
non-precious metal catalyst
P
565$B9b8zN(%(%A%l%s@8@.$X8~$1$?(BCO2$BEE5$2=3XE*4T85$N$?$a$N(BCu$B?(G^!&EE6K$N9=B$@)8f(B
($BEl9)Bg2=@88&(B) ($B3X(B)$B!{>>;3(B $B>0$B!&(B ($B@5(B)$BED4,(B $B9'7I(B$B!&(B ($B@5(B)$B;38}(B $BLT1{(B
CO2 electroreduction
Cu catalyst
structural control
P
599$BG.J,2r$rM^$($?9bB.G.=hM}$K$h$k%Z%m%V%9%+%$%H3h@-AX$NBgN37B2=(B
($BEl9)Bg1!1~2=(B) ($B3X(B)$B!{0B85(B $B;|1M(B$B!&(B $BNkLZ(B $B0lGO(B$B!&(B Budiutama Gekko$B!&(B ($B@5(B)$BD9C+@n(B $B3>(B$B!&(B ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)$B0K86(B $B3X(B
Solar Cell
Perovskite
Grain Size
P
602Modeling of the Effects of Porosity and Passivation on Porous Silicon
(Tokyo Tech) ($B3X(B)$B!{(BSundarapura P.$B!&(B ($B@5(B)Manzhos S.$B!&(B ($B@5(B)Ihara M.
Porous Silicon
Passivation
Modeling
O
627Study on Activity of Citric Acid-decorated Carbon Nanotubes for Oxygen Reduction Reaction
(Tokyo Tech) ($B3X(B)$B!{(BChen Kexin$B!&(B ($B@5(B)Hasegawa Kei$B!&(B ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)Ihara Manabu$B!&(B ($B@5(B)Waki Keiko
Oxygen reduction reaction
Nitrogen doping
Carbon nanotubes
O
629$B1F$r4^$`B@M[EECSH/EENLM=B,$K$*$1$kF|
($BEl9)Bg1~2=(B) ($B3X(B)$B!{Bg:P(B $B2F@8(B$B!&(B ($B3X(B)$BBg5WJ](B $BC$:H(B$B!&(B ($B@5(B)$BD9C+@n(B $B3>(B$B!&(B ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)$B0K86(B $B3X(B
Energy system
Solar cell
Simulation
P
630$B9bB.?eAG5[B"J|=P$N$?$a$N(BLaNi5-$B9bJ,;R2A(B
($BAaBg@h?JM}9)(B) ($B3X(B)$B!{>.:d(B $BBk@8(B$B!&(B ($B3X(B)$B2#0f(B $B7z?M(B$B!&(B ($B@5(B)$BLnED(B $BM%(B$B!&(B ($B@5(B)$B2VED(B $B?.;R(B
Hydrogen storage
Metal hydride
Pulverization
P
635Investigating the Structural Change of PbI2-rich Perovskite Solar Cells After Storage
(Tokyo Tech) ($B3X(B)$B!{(BLi Ruicheng$B!&(B ($B@5(B)Hasegawa Kei$B!&(B ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)Ihara Manabu$B!&(B ($B@5(B)Waki Keiko
hole transportation material (HTM)-free perovskite solar cell
perovskite self-recrystallization
interface reconstruction
O
636$B7P:Q:GE,2=%b%G%k$rMQ$$$?G[EELVNN0h$N7OE}@)Ls$K$h$kB@M[8wH/EE$NF3F~1F6AI>2A(B
($BEl9)Bg1~2=(B) ($B3X(B)$B!{Bg20(B $B>;;N(B$B!&(B ($B@5(B)$BD9C+@n(B $B3>(B$B!&(B ($B%G%m%$%H%H!<%^%D%3%s%5%k%F%#%s%0(B) ($B@5(B)$Bzpyu(B $BGn(B$B!&(B ($BEl9)Bg1~2=(B) ($B@5(B)Manzhos Sergei$B!&(B ($B@5(B)$B0K86(B $B3X(B
economic optimization model
distribution network substation
photovoltaic power
O
648$B%W%m%H%sEAF3@-L55!8GBNEE2r2A(B
($BElBg1!?7NN0h(B) ($B3X(B)$B!{EDEg(B $B@1Li(B$B!&(B ($BEl9)Bg1!M;9gM}9)(B) ($B@5(B)$BBgM'(B $B=g0lO:(B
Solid oxide fuel cells
Proton-Conducting inorganic solid electrolyte
Hydrogen permeable membranes
O
654$BJ*M}%b%G%k%Y!<%9G3NAEECS%7%9%F%`%7%_%e%l!<%?3+H/(B
($B5~Bg(B) ($B@5(B)$B!{D9C+@n(B $BLP$B!&(B ($BG@9)Bg(B) ($B@5(B)$B6b(B $B>090(B$B!&(B ($B5~Bg(B) ($B@5(B)$B1F;3(B $BH~HA(B$B!&(B ($B@5(B)$B2O@%(B $B85L@(B
Fuel cell
Simulation
Modeling
O
655$B8GBN9bJ,;R7AG3NAEECS$NEE2r
($B5~Bg9)(B) ($B@5(B)$B!{1F;3(B $BH~HA(B$B!&(B ($B3$(B)Balci Beste$B!&(B ($B3$(B)$BN&(B $B3.(B$B!&(B ($B3X(B)$BCJ>e(B $BfFB@O:(B$B!&(B $BCfF;(B $B5.H~Be(B$B!&(B ($B@5(B)$B2O@%(B $B85L@(B
polymer electrolyte fuel cell
membrane
MEA
O
656$B8GBN9bJ,;R7AG3NAEECS$NN.O)$H3H;6AX$K$*$1$k%^%/%m:.9g$NDj<02=(B
($B5~Bg9)(B) ($B3X(B)$B!{GO(B $B\@N](B$B!&(B ($B@5(B)$B1F;3(B $BH~HA(B$B!&(B $B9TE7(B $B5WO/(B$B!&(B ($B@5(B)$B2O@%(B $B85L@(B
polymer electrolyte fuel cell
flow channel
macromixing
P
658PEFC$B$N%+%=!<%I?(G^AXFb$NM"AwDq93$N1F6A$r9MN8$7$?;@AG4T85H?1~B.EY$N2r@O(B
($B5~Bg9)(B) ($B3X(B)$B!{>.@n(B $B51(B$B!&(B ($B@5(B)$BD9C+@n(B $BLP$B!&(B ($B@5(B)$B1F;3(B $BH~HA(B$B!&(B $B9TE7(B $B5WO/(B$B!&(B ($B@5(B)$B2O@%(B $B85L@(B
polymer electrolyte fuel cell
oxygen reduction reaction
mass transfer resistance
P
703$B5;=Q$NCO0h$X$N%^%C%A%s%0$H
($BElBgAm3g%W%m(B) ($B@5(B)$B!{7s>>(B $BM40lO:(B$B!&(B ($BElBgL$Mh%S(B) ($B@5(B)$BF#0f(B $B>MK|(B$B!&(B ($BElBgL$Mh%S(B/$BElBgAm3g%W%m(B/$BElBg9)(B) ($B@5(B)$B5FCS(B $B9/5*(B
open data
life cycle assessment
emerging technologies
O

$B9V1i?=$79~$_0lMw(B($B%7%s%]%8%&%`HV9f!&9V1iJ,N`HV9fJL(B)

$B
$B2=3X9)3X2qBh(B87$BG/2q(B($B?@8M(B)

(C) 2022 $B8x1W
Most recent update: 2022-06-14 16:59:01
For more information contact $B2=3X9)3X2qBh(B87$BG/2q
E-mail: inquiry-87awww3.scej.org
This page was generated by easp 2.47; update.pl 2.37 (C)1999-2015 kawase