Japanese page
SCEJ

SCEJ 89th Annual Meeting (Sakai, 2024)

Program search result : Machine Learning : 22 programs

The preprints can be viewed by clicking the Paper IDs.
The ID/PW sent to the Registered participants and invited persons are required.

Keywords field exact matches “Machine Learning”; 22 programs are found.
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
13:2015:20
PA130Machine-learning-assisted molecular evolution for the analysis of sequence-structure-function relationships
(Tohoku U.) *(Stu)Kabai Masaki, (Reg)Ito Tomoyuki, Sugiyama Narumi, (Reg)Nakazawa Hikaru, (Tohoku U./RIKEN) (Reg)Umetsu Mitsuo
Protein
Machine learning
Molecular evolution
7-a547
Day 1
13:4014:00
K115Quality prediction in a small data environment for batch processes
(Kaneka) (Cor)Yamaguchi Takafumi
Machine Learning
Quality Prediction
Small data
6-a286
Day 1
15:0015:20
K119Data-driven approach to automated reaction process analysis
(U.Tokyo/Auxilart) *(Reg)Kim Junu, (Riken AIP) Sakata Itsushi, (Ubitone) Yamatsuta Eitaro, (U.Tokyo) (Reg)Sugiyama Hirokazu
Mechanistic model
Machine learning
Neural network
6-b235
Day 1
16:0016:20
F122Development of Hybrid Kinetic Model Applying Machine Learning for Liquid Phase Photocatalytic Reaction
(NIT Nagaoka) *(Reg)Atsumi Ryosuke, (Stu·PCEF)Nakano Haruka, (Stu)Iwai Makoto
Photocatalyst
Kinetics
Machine learning
5-a693
Day 1
16:2016:40
F123Machine Learning-assisted analysis of NO adsorption and dissociation on PdRuIr ternary nanoparticle alloy
(Shinshu U.) *(Reg)Aspera Susan Menez, Valadez Huerta Gerardo, Nanba Yusuke, Hisama Kaoru, (Reg)Koyama Michihisa
machine learning
nanoparticle alloy
catalysis
5-a285
Day 1
16:4017:00
K124Dynamic Process Simulation for Green Ammonia Synthesis Considering Wind and Solar Condition
(NIT Nagaoka) *(Reg)Atsumi Ryosuke, (Stu)Kaneuchi Taiyo, (Stu)Hada Yasuyuki
Dynamic simulation
Green ammonia
Machine learning
6-c695
Day 2
09:2011:20
PB221Real time monitoring of polymer properties and design of polymerization process with machine learning
(Meiji U.) *(Stu)Kawagoe Rinta, (DIC) (Cor)Terauchi Kazutoshi, (Cor)Hamada Fumiya, (Cor)Yamaji Toshinori, (Meiji U.) (Reg)Kaneko Hiromasa
machine learning
polymer
Online sensing
6-d66
Day 2
09:2011:20
PB226Vapor pressure prediction of amines using molecular descriptors
(IHI) *(Cor)Kadowaki Haruna, (Kogakuin U.) (Stu)Shobuke Hayato, (Reg)Takaba Hiromitsu, (IHI) (Cor)Takahashi Katsumi
Machine Learning
Physical Property Prediction
amine
6-g12
Day 2
09:2011:20
PB280Application of US-EC system oxidation PPCPs and using machine learning to predict hydraulic retention time in continuous processes
(Korea U.) *(Int)Zhou Yongyue, (Int)Ren Yangmin, (Int)Guo Fengshi, (Div)Sun Shiyu, (Kumoh Nat. Inst. Tech.) Son Younggyu, (Korea U.) Cui Mingcan, Khim Jeehyeong
Machine learning
Sonoelectrochemical
Continuous stirred-tank reactor
13-b16
Day 2
09:2011:20
PB286Prediction of CO2 desorption performance of amine-based absorbents in vacuum flash desorption using porous hollow fiber membranes
(Shinshu U.) *(Stu)Nakamura Junya, (Reg)Shimada Iori, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide
CO2 chemical absorption
CO2 stripping
machine learning
13-g690
Day 2
10:0010:20
F204Exploring the large-area graphene CVD conditions by machine learning assisted image analysis
(Fukuoka U.) (Stu)Tahara Yuya, *(Reg)Yoshihara Naoki, (Reg)Noda Masaru
Graphene
Chemical vapor deposition
Machine learning
5-i302
Day 2
13:2015:20
PC216Determination of Molecular Descriptor in Pharmaceutical Cocrystal Prediction
(Nat. Taipei Tech.) *(Int)Hung Ying Chieh, Hung Hsiu-Min, Huang Kuan Hsiang
Molecular Descriptor
Machine learning
Cocrystal
8-b370
Day 2
14:2014:40
K217Coarse-Grained Force Field Parametrization for Polymers Using Machine Learning
(Toyota Motor) *(Reg)Morishita Tetsunori, (Massachusetts Inst. Tech.) Leon Pablo, Gomez-Bombarelli Rafael
Coarse-Grained Force Field
Machine Learning
6-g220
Day 2
15:0015:20
F219Polymer immobilization catalysts using machine learning methods
(Kyushu U.) *(Reg)Miura Yoshiko, Zhou Xincheng, (Reg·PCE)Matsumoto Hikaru, (Reg)Nagao Masanori
Polymer Immobilized Catalyst
Machine Learning
Pd
5-f717
Day 2
15:0015:20
H219Understanding the stability of features for AI cardiotoxicity prediction models using in vitro cardiomyocyte beating data.
(Nagoya U.) *(Reg)Tanaka Kenjiro, Izumi Katsuyuki, Ban Masanari, (U. Shizuoka) Iwashita Kenshiro, (Nagoya U.) Imai Yuta, (Kindai U.) (Reg)Kanie Kei, (U. Shizuoka) Sato Rina, Shimizu Satoshi, (NIHS) Yanagida Shota, Kawagishi Hiroyuki, Kanda Yasunari, (U. Shizuoka) Kurokawa Junko, (Nagoya U.) (Reg)Kato Ryuji
cardiotoxicity
iPS-derived cardiomyocytes
Machine learning
7-e195
Day 3
9:209:40
H302Improving the performance of fluorescence immunosensor by predicting single mutation effects using protein language model
(Tokyo Tech) *(Stu)Inoue Akihito, (Reg)Zhu Bo, (Reg)Yasuda Takanobu, Mizutani Keisuke, Kobayashi Ken, (Reg)Kitaguchi Tetsuya
immunosensor
yeast surface display
machine learning
7-a13
Day 3
09:2011:20
PD367Machine Learning Models for Predicting Gaseous Adsorption in Metal-Organic Frameworks by Employing Sigma Profiles of Organic Linkers
(Nat. Central U.) *Cheng Ya-Hung, Hsieh Chieh-Ming, (Nat. Taiwan U.) Lin Li-Chiang, Sung I-Ting
metal-organic frameworks
adsorption
machine learning
4-e362
Day 3
10:0010:20
I304Dispersion prediction of surface modified nanoparticles using machine learning model with various molecular descriptors
(Tokyo Tech) *(Reg)Orita Yasuhiko, (Stu)Shibata Koh, (Reg)Shimoyama Yusuke
machine learning
dispersion prediction
surface modified nanoparticles
1-b242
Day 3
10:0010:20
J304Machine learning compared with conventional statistic model: Design of permeable reactive barrier for groundwater remediation
(Korea U.) *(Stu)Ren Yangmin, (Stu)Zhou Yongyue, (Stu)Sun Shiyu, (Stu)Guo Fengshi, Cui Mingcan, Khim Jeehyeong
Groundwater
Permeable reactive barrier
Machine learning
13-a19
Day 3
13:2015:20
PE335Establishment of machine learning model for ultrasonic combined catalyst degradation of organic pollutants: focus on prediction of kinetic constants
(Korea U.) *(Stu)Sun Shiyu, (Stu)Zhou Yongyue, (Stu)Ren Yangmin, (Stu)Guo Fengshi, Cui Mingcan, Khim Jeehyeong
Ultrasonics
catalyst
machine learning
5-b319
Day 3
14:0014:20
I316Physics-informed neural networks for flow in a bubble column
(MHRT) *(Cor)Nakamura Kotaro, Yamade Yoshinobu, Mizuhara Shinichi, Koizumi Hiroshi
Bubble column
OpenFOAM
Machine learning
2-d635
Day 3
14:0014:20
K316Machine-Learning-Aided Understanding of Protein Adsorption onto Zwitterionic Polymer Brushes
(Tokyo Tech) *(Reg)Okuyama Hiroto, (Reg)Sugawara Yuuki, (Reg)Yamaguchi Takeo
Zwitterionic polymer
Antifouling
Machine learning
12-a554

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 89th Annual Meeting (Sakai, 2024)


© 2024 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 89th Annual Meeting
E-mail: inquiry-89awww4.scej.org