Japanese page RELOAD
SCEJ

SCEJ 90th Annual Meeting (Tokyo, 2025)

Program search result : machine learning : 28 programs

The preprints are now open. These can be viewed by clicking the Paper IDs.
The ID/PW sent to the non-free Registered participants and invited persons are required.
Yellow-back on the Technical sessions and session list denotes the on-site/virtual hybrid sessions.
All other sessions will be the on-site only sessions.

Keywords field exact matches “machine learning”; 28 programs are found.
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
13:1513:45
G114[Divisional Award] Frontier Prize lecture: Surrogate-Modeling of Powder Flow and Mixing using Machine Learning
(Osaka Metro. U.) *(Reg)Nakamura Hideya, (Stu)Kishida Naoki, (Reg)Ohsaki Shuji, (Reg)Watano Satoru
Powder mixing
Discrete element method
Machine learning
X-51448
Day 1
13:2015:20
PA102Machine-learning-guided directed evolution of antibody fragments: simultaneous optimization of affinity, expression, and thermal stability
(Tohoku U.) *(Reg)Ito Tomoyuki, Kawada Sakiya, (Reg)Nakazawa Hikaru, (Tokushima U.) Murakami Akikazu, (Tohoku U.) (Reg)Umetsu Mitsuo
VHH
machine learning
molecular evolution
7-a457
Day 1
13:2015:20
PA146Development of a direct machine learning process from cytotoxicity on the subject of a novel T-cell engaging antibody
(Tohoku U.) *(Stu)Ito Kohei, (Reg)Ito Tomoyuki, Sasaki Renan, Tanno Ryo, (Reg)Nakazawa Hikaru, (Reg)Umetsu Mitsuo
Protein Engineering
Antibody
Machine learning
7-a660
Day 1
13:2015:20
PA151Data augmentation technology for morphology-based prediction model of human fibroblasts
(Nagoya U.) *(Stu)Katayama S., Kimura K., (Reg)Tanaka K., (Reg)Kato R.
Data augmentation
Cell morphology
Machine learning
7-e207
Day 2
9:2011:20
PB270Design of a CO2 Adsorption Separation System Using a Machine Learning-Based Process Flowsheet
(Nagoya U.) *(Stu·PCEF)Fujii Yota, (Reg)Matsuda Keigo
CO2
Machine Learning
Adsorption
4-e618
Day 2
11:0011:20
K207Rapid estimation of crystal structures of perovskite oxides using a soft bond valence method with machine learning
(Science Tokyo) *(Reg)Kameda Keisuke, Ito Kazuma, (Reg)Ihara Manabu, (Reg)Manzhos Sergei
bond valence
machine learning
proton conductors
9-e157
Day 2
13:2015:20
PC203Modeling of Photocatalytic Degradation Kinetics of Azo Compounds Applying Machine Learning
(NIT Nagaoka) *(Stu·PCEF)Nakano Haruka, Kasuga Syunsuke, (Reg)Atsumi Ryosuke
Photocatalyst
Machine Learning
Kinetic Study
6-b423
Day 2
13:2015:20
PC205Construction of property prediction model and inverse analysis of the model in carbon material manufacturing process with different batch times
(Meiji U.) *(Stu)Matsubara Masayoshi, (Mitsubishi Chemical) (Cor)Sasaki Ryo, (Cor)Takahara Jun, (Cor)Moritake Shinji, (Cor)Harada Yasuyuki, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Batch time
6-e240
Day 2
13:2015:20
PC209Prediction of Ionic Conductivity in Solid Electrolytes Using a Machine Learning Model
(Meiji U.) *(Stu)Ishikawa Eri, (Reg)Kaneko Hiromasa
Solid Electrolyte
Machine Learning
Materials Informatics
6-f244
Day 2
13:2015:20
PC213Development of machine learning models to predict gas permeability from monomer structures and properties of polymer materials
(Meiji U.) *(Stu)Ochiai Haruki, Nagai Kazukiyo, (Reg)Kaneko Hiromasa
Machine Learning
Polymer
Permeability
6-g349
Day 2
13:2015:20
PC216Design of new acetylcholinesterase inhibitors using a Generative Adversarial Network
(Meiji U.) *(Stu)Ando Ruka, (Reg)Kaneko Hiromasa
acetylcholinesterase
Generative Adversarial Network
machine learning
6-g43
Day 2
13:2015:20
PC218Development and improvement of an odor prediction model based on molecular structure using olfactory receptor information
(Meiji U.) *(Stu)Wakutsu Yuta, (Reg)Kaneko Hiromasa
Odor
Protein
Machine Learning
6-g93
Day 2
13:2015:20
PC220Development of machine learning model-based scores to evaluate pesticide-likeness
(Meiji U.) *(Stu)Sakai Yuta, (Reg)Kaneko Hiromasa
Machine Learning
Quantitative Structure-Activity Relationship
Pesticide
6-g120
Day 2
13:2015:20
PC221Exploration of Candidate Molecules for Organic Semiconductor Materials Using Generative Models
(Meiji U.) *(Stu)Nakanishi Yamato, (Panasonic Ind.) Matsuzawa Nobuyuki N, Maeshima Hiroyuki, Ando Tatsuhito, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Organic semiconductor
Hierarchical Variational Autoencoder
6-f242
Day 2
13:2015:20
PC222Optimization of Kalina Cycle with Snow and Ice Heat Source Appliyng Machine Learning
(NIT Nagaoka) *(Stu·PCEF)Koyama Yamato, (Reg)Atsumi Ryosuke
Renewable Energy
Machine Learning
Thermal Energy
6-b429
Day 2
13:2015:20
PC223Development of a method for predicting drug-drug interactions considering negative data mixed with positive data
(Meiji U.) *(Stu)Kosakai Soma, (Reg)Kaneko Hiromasa
Drug-drug interaction
Machine learning
Positive-unlabeled learning
6-f119
Day 2
13:2015:20
PC226Prediction of CO2 solubility in deep eutectic solvents from machine learning models with molecular sigma-profiles
(Nat. Central U.) *Chen Ying-Jung, Hsieh Chieh-Ming
deep eutectic solvents
machine learning
COSMO-SAC model
6-e644
Day 2
13:2015:20
PC227Pure Component Parameter Estimation for PC-SAFT EOS from Deep Neural Network with Molecular Sigma-Profiles
(Nat. Central U.) *Chen Jia-Hao, Hsieh Chieh-Ming
PC-SAFT EOS
Machine Learning
Sigma Profile
6-e661
Day 2
13:2015:20
PC229Development of machine learning models for predicting the degradation activity and thermostability of plastic-degrading enzymes
(Meiji U.) *(Stu)Ohkuma Ayami, (Reg)Kaneko Hiromasa
machine learning
bioinformatics
plastics-degrading enzymes
6-g378
Day 2
13:2015:20
PC234Building machine learning models to suggest new drug candidates for schizophrenia
(Meiji U.) *(Stu)Kimura Shoei, (Reg)Kaneko Hiromasa
Machine learning
Drug design
Schizophrenia
6-g373
Day 2
13:2015:20
PC235Parameter identification for a chemical reaction rate by a machine learning approach
(Mizuho R&T) *(Cor)Nakamura Kotaro, (Cor)Yamade Yoshinobu, (Cor)Mizuhara Shinichi, (Cor)Koizumi Hiroshi, Nagano Katsuhiro
Parameter identification
Machine learning
Methanation
6-f449
Day 2
14:0014:30
E215[Invited lecture] Computational approach to adsorption property and nanostructure in organically-modified 2D interlayer
(Kogakuin U.) *(Reg)Miyagawa Masaya, (Reg)Takaba Hiromitsu
Machine learning
Molecular dynamics
Adsorption
K-5622
Day 2
15:4016:00
G221Machine Learning-Driven Multiphysics-Scale Simulation of Spray Wet Etching
(Toppan HD) *(Reg)Yokota Ryohsuke, Oguchi Ayumi, Ota Shinji, (Reg)Wada Shinichi
Wet Etching
Simulation
Machine Learning
2-e46
Day 3
9:2011:20
PD329Proposal for a new framework to construct empirical rule
(Osaka Pref. U.) *(Stu·PCEF)Nishimura Ritsuki, (Osaka Metro. U.) (Reg)Yamamoto Takuya
CFD simulation
Machine learning
2-g188
Day 3
9:2011:20
PD359Machine learning-driven optimization in flow reactions using Pd-immobilized catalysts
(Kyushu U.) *(Stu)Zhou Xincheng, (Reg·PCEF)Matsumoto Hikaru, (Reg)Nagao Masanori, (Reg)Miura Yoshiko
Polymer immobilized Pd catalyst
Machine learning
Process optimization
5-f50
Day 3
9:4010:00
M303AI-Driven 3D Bioprinting System for Optimizing Printing Performance
(Osaka U.) *(Stu)Zhang Colin, (Stu)Elvitigala Kelum, (Reg)Sakai Shinji
3D bioprinting
Process optimization
Machine learning
7-f248
Day 3
10:0010:20
H304Development of uroflowmetry using urine jet images
(Saitama U.) *(Reg)Homma Shunji, (Stu)Kaneko Riki, Kiyama Akihito, Kan Donghyuk, (Saitama Med. U.) Takeshita Hideki
uroflowmetry
Machine learning
CFD
6-f27
Day 3
13:2013:40
G314Development of a data-driven framework for optimal design of air filter microstructures
(Hiroshima U.) *(Reg)Ishigami Toru, Tsuzuki Hina, Shirzadi Mohammadreza, (Reg)Fukasawa Tomonori, (Reg)Fukui Kunihiro
Air filter
Numerical simulation
Machine learning
2-a300
DispCtl: Preferences

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 90th Annual Meeting (Tokyo, 2025)


© 2025 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 90th Annual Meeting
E-mail: inquiry-90awww4.scej.org