Japanese page
SCEJ

SCEJ 55th Autumn Meeting (Sapporo, 2024)

Program search result : モデル : 46 programs

The preprints are now open. These can be viewed by clicking the Paper IDs. The ID/PW sent to the Registered participants and invited persons are required.

Title (J) field includes “モデル”; 46 programs are found. (“Poster with Flash” presentations are double-counted.)
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
9:009:20
M101Machine learning model for predicting three-dimensional flow field inside a face mask obtained from X-ray CT
(Hiroshima U.) *(Stu·PCEF)Hada K., Shirzadi M., (Reg)Fukasawa T., (Reg)Fukui K., (Reg)Ishigami T.
face mask
numerical simulation
machine learning
SY-52527
Day 1
9:0012:00
YB128Construction of yield prediction model in catalytic cracking of vegetable oils considering fatty acid composition
(Shinshu U.) *(Stu)Sekikawa Nozomi, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
catalytic cracking
vegetable oil
machine learning
SY-63697
Day 1
9:0012:00
YB130Construction of Prediction Model for the Yield of Suzuki-Miyaura Type Cross-Coupling Reactions Using Polymeric Ni Catalysts and Proposal of Novel Polymeric Ni Catalysts
(Meiji U.) *(Stu)Takaoka Sho, (Riken) Zhang Zhenzhong, Yamada Yoichi M. A., (Meiji U.) (Reg)Kaneko Hiromasa
Machine Learning
Polymeric Ni Catalysts
Chemical Reactions
SY-63271
Day 1
9:0012:00
YB131Extension of chemical reaction neural network for kinetic model construction of heterogeneous catalyst reactions
(Shinshu U.) *(Stu)Yokosuka Natsuki, (Reg)Shimada Iori
chemical reaction neural network
kinetic model
heterogeneous catalyst
SY-63255
Day 1
10:5011:00
YA182A prioritization of parameter determinations for constructing a kinetic model of metabolic pathways
(Osaka U.) *(Stu)Yoshimi Yukina, (Reg)Imada Tatsumi, (Reg)Shimizu Hiroshi, (Reg)Toya Yoshihiro
Kinetic model
Metabolic pathway
SY-68306
Day 1
11:4012:00
Q109Development of a graph neural network (GNN) model for predicting the solubility of organic compounds in supercritical CO2
(Kanazawa U.) *(Stu)Yamamoto S., (Reg)Uchida H.
Supercritical
Solubility prediction
Machine learning
SY-73851
Day 1
13:0013:20
L113Machine learning model estimating blood glucose monitoring from mid-infrared spectra measured by the photothermal monitoring method
(Meiji U.) *(Stu)Takami Yuta, (Mitsubishi Electric) Miyagawa Keita, Tsuda Yuki, Akiyama Koichi, (Meiji U.) (Reg)Kaneko Hiromasa
mid-infrared spectra
noninvasive blood glucose monitoring
machine learning
SY-66102
Day 1
13:1013:30
V113Modeling of stratified treatment for cost-effectiveness analysis of new drugs and evaluation case studies
(U. Tokyo) *(Stu·PCEF)Ikuta Daiki, (Reg)Hayashi Yusuke, (Reg)Sugiyama Hirokazu
Agent-based modeling
Stratification strategy
New modality
ST-2696
Day 1
13:4014:00
K115Study on hydrogen utilization model for decarbonization of factories using mainly thermal energy
(Kobe Steel) *(Reg)Matsuoka Akira, (Cor)Imayo Hiroshi, (Reg)Fujisawa Akitoshi, (Cor)Ogata Kento, (Kobelco E&M) (Cor)Yamauchi Taro
hydrogen
thermal energy
carbon neutrality
SY-74265
Day 1
13:4014:00
L115Development of a soft sensor model that takes into account the dynamic characteristics of the process and two similar qualities
(Meiji U.) *(Stu)Ohkuma Ayami, (Mitsubishi Chemical) (Cor)Yamauchi Yoshihito, (Cor)Yamada Nobuhito, (Cor)Ooyama Satoshi, (Meiji U.) (Reg)Kaneko Hiromasa
machine learning
soft sensor
time delay
SY-66260
Day 1
14:0014:20
S116Construction of a machine learning model for predicting the characteristics from the fuel cell electrode catalyst layer preparation process
(Honda R&D) *(Cor)Matsumori Hiroshi, (Cor)Maebashi Takanori, (Cor)Makino Katsunori, (Cor)Igarashi Takanori, (Cor)Inoue Ryosuke, (Cor)Tomoyasu Shinya, (Cor)Tanaka Yukihito, (Cor)Komoda Hiroaki
Fuel Cell
Electrode
Machine learning
ST-23489
Day 1
14:0015:20
YA182A prioritization of parameter determinations for constructing a kinetic model of metabolic pathways
(Osaka U.) *(Stu)Yoshimi Yukina, (Reg)Imada Tatsumi, (Reg)Shimizu Hiroshi, (Reg)Toya Yoshihiro
Kinetic model
Metabolic pathway
SY-68306
Day 1
15:4016:00
L121A method for estimating the reaction rates by inverse analysis of elementary reaction and transport model simulating a denitrification system
(Toshiba Energy Systems & Solutions) *(Reg)Nakamura Kotaro, Takeyama Daiki, Tsukada Keisuke, Fukuta Masato
Kinetic model
Surface reaction
Optimization
SY-66326
Day 1
15:4016:00
S121[Featured presentation] A fuel cell catalyst degradation model for the integration to the fuel cell system simulator
(Kyoto U.) *(Reg)Hasegawa Shigeki, (TUAT) (Reg·APCE)Kim Sanghong, (Kyoto U.) (Reg)Kageyama Miho, (Reg)Kawase Motoaki
fuel cell
simulation
degradation
ST-23256
Day 1
15:4016:40
YB131Extension of chemical reaction neural network for kinetic model construction of heterogeneous catalyst reactions
(Shinshu U.) *(Stu)Yokosuka Natsuki, (Reg)Shimada Iori
chemical reaction neural network
kinetic model
heterogeneous catalyst
SY-63255
Day 1
16:0016:20
S122Optimization of operation conditions of fuel cell systems based on material properties using model predictive control
(TUAT) *(Stu·PCEF)Sakata Ibuki, (Reg·APCE)Kim Sanghong, (Kyoto U./Toyota Motor) (Reg)Hasegawa Shigeki, (Kyoto U.) (Reg)Kawase Motoaki
Fuel Cell Systems
Model Predictive Control
ST-23696
Day 1
16:4017:40
YB128Construction of yield prediction model in catalytic cracking of vegetable oils considering fatty acid composition
(Shinshu U.) *(Stu)Sekikawa Nozomi, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
catalytic cracking
vegetable oil
machine learning
SY-63697
Day 1
16:4017:40
YB130Construction of Prediction Model for the Yield of Suzuki-Miyaura Type Cross-Coupling Reactions Using Polymeric Ni Catalysts and Proposal of Novel Polymeric Ni Catalysts
(Meiji U.) *(Stu)Takaoka Sho, (Riken) Zhang Zhenzhong, Yamada Yoichi M. A., (Meiji U.) (Reg)Kaneko Hiromasa
Machine Learning
Polymeric Ni Catalysts
Chemical Reactions
SY-63271
Day 1
16:4517:00
W125Calculation of virus filter performance and virus removability using an advanced multilayer membrane model
(Asahi Kasei Medical) (Reg)Shirataki Hironobu
Virus filter
virus reduction
multilayer model
SY-6915
Day 2
9:3011:00
YA206Constructing model for predicting pesticide activity using scaffolds by machine learning and visualizing the basis for prediction
(Meiji U.) *(Stu)Sakai Yuta, (Reg)Kaneko Hiromasa
Machine Learning
Quantitative Structure-Activity Relationship
Pesticide
SY-7886
Day 2
9:3011:00
YA232Construction of predictive model for biodegradability as an alternative to biodegradability test using machine learning
(Meiji U.) *(Stu)Ochiai Haruki, (Reg)Kaneko Hiromasa
Machine Learning
Biodegradation
plastic
SY-7890
Day 2
9:3011:00
YA258Evaluation of optical properties of light shielding gel using temperature-responsive polymer and construction of a model for predicting transmittance
(Akita U.) *(Stu)Iwaya Koki, (Reg)Nakamura Ayano, (Reg)Murakami Kenji
temperature-responsive polymer
light shielding material
gel
SY-78659
Day 2
10:3012:00
YA217Proposal of a mathematical model describing nanoparticle translocation across cell membrane
(Osaka Metro. U.) *(Stu)Kashiwai Rika, (Reg)Nakamura Hideya, (Reg)Ohsaki Shuji, (Reg)Watano Satoru
Nano particles
Cell membrane
Mathematical model
SY-78241
Day 2
10:3012:00
YA223Research to Improving the Accuracy of Machine Learning Models for Predicting Reorganization Energy
(Meiji U.) *(Stu)Nakanishi Yamato, (Panasonic Ind.) Matsuzawa Nobuyuki N, Maeshima Hiroyuki, Ando Tatsuhito, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Organic semiconductor
Graph Convolutional Network
SY-78272
Day 2
10:4011:00
L206Design space determination in freezing processes for human iPS cell-derived spheroids using hybrid models
(U. Tokyo) *(Stu)Fujioka Masaharu, (Reg)Hayashi Yusuke, (Sumitomo Pharma) Yamaguchi Yuta, Fujii Tetsuya, (U. Tokyo) (Reg)Sugiyama Hirokazu
Manufacturing
Regenerative medicine
Numerical simulation
SY-66567
Day 2
11:4012:00
R209Measurement of VOC adsorption equilibria on mesoporous silica in supercritical CO2 and analysis by thermodynamic adsorption model
(Hiroshima U.) *(Stu)Hirata Shunsuke, (Reg)Ushiki Ikuo
Supercritical carbon dioxide,
Mesoporous silica
Adsorption
SY-51620
Day 2
11:4012:00
V209Development of model about moisture sorption kinetics based on water transfer properties in freeze-dried sugar matrices
(Kyoto U.) *(Stu·PCEF)Okada Yuji, (Reg)Suzuki Tetsuo, (Reg)Sano Noriaki, (Kyushu U.) (Reg)Nakagawa Kyuya
Freeze-drying
Moisture sorption
Model prediction
SY-70935
Day 2
13:0013:20
L213Optimization of property prediction model in dynamic manufacturing process for carbon materials using a genetic algorithm
(Meiji U.) *(Stu)Matsubara Masayoshi, (Mitsubishi Chemical) (Cor)Sasaki Ryo, (Cor)Takahara Jun, (Cor)Moritake Shinji, (Cor)Harada Yasuyuki, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Genetic-algorithm-based process variables and dynamics selection
Multi-objective optimization
SY-66273
Day 2
13:0013:40
R213[Review lecture] Property prediction with machine learning models and designs of molecules, materials and processes through inverse analysis of models
(Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Material design
Process design
SY-51431
Day 2
13:0014:30
YB245Machine learning model predicting properties from monomer structures of alkyl sulfonated polyimides
(Meiji U.) *(Stu)Ando Ruka, (JAIST) Aoki Kentaro, Nagao Yuki, (Meiji U.) (Reg)Kaneko Hiromasa
alkyl sulfonated polyimide
machine learning
fuel cell
SY-7582
Day 2
13:2013:40
E214Prediction model for real-time power generation of solar cells with shadow simulation based on module structure and irradiance fraction
(Tokyo Tech) *(Stu)Otoshi Natsuki, Kasai Yuya, (Reg)Kameda Keisuke, (Reg)Manzhos Sergei, (Reg)Ihara Manabu
Solar cell
Energy system
Prediction model
ST-22865
Day 2
13:2013:40
L214Discussion toward the application of mathematical models in controlling cell cultivation and antibody production
(U. Tokyo) *(Reg·SPCE)Yamada Akira, (Reg)Sugiyama Hirokazu
Cell Cultivation
Antibody production
Process Control
SY-66573
Day 2
13:2013:40
V214Near-infrared spectroscopic characteristics of saccharides in aqueous solutions with sodium chloride
(Mie U.) *(Reg)Suehara Ken-ichiro, (Reg)Hashimoto Atsushi
infrared spectroscopy
2D correlation
food model
SY-701100
Day 2
13:4014:00
R215Searching for the optimal machine learning prediction model in carbon dioxide expansion fluid density
(Tokyo U. Sci.) *(Stu)Imagaki Takaya, (Reg)Matsukawa Hiroaki, (Reg)Shono Atsushi, (Universiti Teknologi Malaysia) (Reg)Tsuji Tomoya, (Tokyo U. Sci.) (Reg)Otake Katsuto
machine learning
carbon dioxide
density
SY-51403
Day 2
14:0014:20
E216Molecular design using deep learning and vecror annealing
(NEC) (Reg)Ishida Masahiko
Deep learning
Quantum anealing
Generative model
ST-221099
Day 2
14:0014:20
L216Deep Learning Prediction Model for Solubility of Nanoparticles From Perspective of Similarity
(TUAT) *(Reg·PCE)Xia Junqing, (Reg)Yamashita Yoshiyuki
Nanoparticle solubility
Deep learning
SY-66677
Day 2
14:4015:00
F218Development of a reaction kinetic model of hydrothermal synthesis of formic acid from KHCO3 solution.
(Shinshu U.) *(Stu)Danjo Masaaki, (Reg)Shimada Iori, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide
CCU
alkali bicarbonate
chemical absorption
SY-64884
Day 2
15:0015:20
L219Molecular design with direct inverse analysis of autoencoder-based QSAR/QSPR model
(Meiji U.) *(Stu)Shino Yuto, (Reg)Kaneko Hiromasa
Machine learning
Inverse analysis
Molecular design
SY-66140
Day 2
15:0015:20
Q219Model Analysis for Extraction Behavior of Rice Bran Oil from Rice Bran by Supercritical CO2
(Tohoku U.) *(Stu)Sakurai Kaori, (Reg)Hiraga Yuya, (Reg)Watanabe Masaru
supercritical carbon dioxide extraction
rice bran oil
group contribution method
SY-73545
Day 2
15:2015:40
E220Development of a product composition prediction model for catalytic cracking reactions and its application to the prediction of reactions with unknown feedstocks
(Shinshu U.) *(Reg)Shimada Iori, Kodama Yuhei, Yasuike Shun
physics-informed machine learning
catalytic cracking
reaction prediction
ST-221128
Day 3
9:009:20
N301Development of the numerical analysis model for the laminar fluid mixing with practical spatial resolution.
(Murozono Kaken) (Reg)Murozono Koji
Laminar Fluid Mixing
Numerical Simulation
SY-551102
Day 3
9:209:40
N302CFD Analysis of Fluid Flow and Mixing in a Stirred Tank: The Effect of Turbulence Models
(Chugai Pharmaceutical) (Reg)Ikeda Ryosuke
CFD
mixing
turbulence
SY-55943
Day 3
10:0010:20
J304Numerical simulation of particle formation processes based on a population balance model describing nucleation pathways
(Kyoto U.) *(Stu·PCEF)Iida Yuya, (Reg)Watanabe Satoshi
Population balance
Nucleation
Numerical simulation
SY-79782
Day 3
10:0011:00
YA331Molecular modelling of solvation structures to evaluate the fouling resistance of zwitterionic materials.
(NITech) *(Stu·PCEF)Nishida Moeno, (Reg)Iwata Shuichi, (Reg)Nagumo Ryo
betaines
biocompatibility
molecular dynamics
SY-57662
Day 3
10:2010:40
W305Machine learning-based cancer diagnosis using size-dependent blood residence time of nanoparticles
(U. Tokyo) *(Reg)Nakamura Noriko, Tokumaru Mikito, (Reg)Ohta Seiichi
machine learning
cancer diagnosis
blood residence time
SY-72624
Day 3
16:4017:00
I324Constructing a Model for Predicting the Growth of Microalgae
(Mazda) *(Reg)Koroki Takehisa, Maeda Shinichiro, Ichikawa Kazuo, (Hiroshima U.) Okazaki Kumiko, (Saitama U.) Nisiyama Yoshitaka
Microalgae
Nannochloropsis
Growth Simulation
ST-24858

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 55th Autumn Meeting (Sapporo, 2024)


© 2024 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 55th Autumn Meeting
E-mail: inquiry-55fwww4.scej.org