Japanese page
SCEJ

SCEJ 55th Autumn Meeting (Sapporo, 2024)

Program search result : machine learning : 51 programs

The preprints are now open. These can be viewed by clicking the Paper IDs. The ID/PW sent to the Registered participants and invited persons are required.

Keywords field exact matches “machine learning”; 51 programs are found. (“Poster with Flash” presentations are double-counted.)
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
9:009:20
M101Machine learning model for predicting three-dimensional flow field inside a face mask obtained from X-ray CT
(Hiroshima U.) *(Stu·PCEF)Hada K., Shirzadi M., (Reg)Fukasawa T., (Reg)Fukui K., (Reg)Ishigami T.
face mask
numerical simulation
machine learning
SY-52527
Day 1
9:0012:00
YB128Construction of yield prediction model in catalytic cracking of vegetable oils considering fatty acid composition
(Shinshu U.) *(Stu)Sekikawa Nozomi, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
catalytic cracking
vegetable oil
machine learning
SY-63697
Day 1
9:0012:00
YB130Construction of Prediction Model for the Yield of Suzuki-Miyaura Type Cross-Coupling Reactions Using Polymeric Ni Catalysts and Proposal of Novel Polymeric Ni Catalysts
(Meiji U.) *(Stu)Takaoka Sho, (Riken) Zhang Zhenzhong, Yamada Yoichi M. A., (Meiji U.) (Reg)Kaneko Hiromasa
Machine Learning
Polymeric Ni Catalysts
Chemical Reactions
SY-63271
Day 1
9:0012:00
YB132Application of Machine Learning in Designing the Width of Permeable Reactive Barriers Based on Reduction Mechanisms
(Korea U.) *(Stu)Ren Yangmin, (Stu)Zhou Yongyue, (Stu)Sun Shiyu, (Stu)Guo Fengshi, Cui Mingcan, Khim Jeehyeong
Machine learning
Permeable reactive barrier
LUMO
SY-63388
Day 1
9:0012:00
YB158Energy-saving design of ethylbenzene production process using machine learning and Bayesian optimization
(Meiji U.) *(Stu)Ishikawa Eri, (Reg)Kaneko Hiromasa
Machine learning
Bayesian optimization
Process design
SY-6376
Day 1
9:209:40
M102Data analysis for unsteady flow under low oscillating Reynolds number conditions using machine learning
(Tokyo Tech) *(Stu)Kanbayashi Yuma, (Reg)Matsumoto Hideyuki, (Reg)Yoshikawa Shiro, (Yasuda Women's U.) (Reg)Ookawara Shinichi
oscillatory flow
machine learning
PIV analysis
SY-52618
Day 1
9:209:40
N102Rapid measurement of emulsion viscosity using machine learning
(U. Hyogo) *(Stu)Tanaka Kouto, (Reg)Itoh Kazuhiro, Morimoto Masakazu, (Reg)Taguchi Shogo, (Reg)Yamamoto Takuji, (Reg)Maeda Kouji
Emulsion
Viscosity
Machine Learning
SY-53129
Day 1
9:209:40
T102A Knowledge-Based Approach for Structural Optimization of CO2 Separation Systems
(Nagoya U.) *(Stu·PCEF)Fujii Yota, (Reg)Matsuda Keigo
CO2
Machine Learning
Knowledge Base
ST-2163
Day 1
9:4010:00
M103Applications of Bayesian Machine Learning to Complex Flows
(Kyoto U.) Miyamoto Souta, Ueno Yoshiki, *(Reg)Molina John, (Reg)Taniguchi Takashi
Machine Learning
Polymer Melt
SY-521038
Day 1
10:0010:20
M104Prediction of flow patterns in liquid-liquid two-phase flow within capillaries using machine learning
(Keio U.) *(Stu)Hashimoto Kohei, (Reg)Fujioka Satoko, (Shizuoka U.) (Reg)Murakami Yuya, (Keio U.) (Reg)Terasaka Koichi
liquid-liquid flow
slug flow
machine learning
SY-521071
Day 1
11:0011:12
YA189Investigation of the use of information from olfactory receptors for molecular odor prediction
(Meiji U.) *(Stu)Wakutsu Yuta, (Reg)Kaneko Hiromasa
Odor
Protein
Machine Learning
SY-68165
Day 1
11:4012:00
Q109Development of a graph neural network (GNN) model for predicting the solubility of organic compounds in supercritical CO2
(Kanazawa U.) *(Stu)Yamamoto S., (Reg)Uchida H.
Supercritical
Solubility prediction
Machine learning
SY-73851
Day 1
12:4014:00
YA189Investigation of the use of information from olfactory receptors for molecular odor prediction
(Meiji U.) *(Stu)Wakutsu Yuta, (Reg)Kaneko Hiromasa
Odor
Protein
Machine Learning
SY-68165
Day 1
13:0013:20
L113Machine learning model estimating blood glucose monitoring from mid-infrared spectra measured by the photothermal monitoring method
(Meiji U.) *(Stu)Takami Yuta, (Mitsubishi Electric) Miyagawa Keita, Tsuda Yuki, Akiyama Koichi, (Meiji U.) (Reg)Kaneko Hiromasa
mid-infrared spectra
noninvasive blood glucose monitoring
machine learning
SY-66102
Day 1
13:0013:40
Q113[Invited lecture] Physical property prediction based on machine learning and ab initio calculation
(Shizuoka U.) (Reg)Murakami Yuya
Machine learning
Physical property
Transfer learning
SY-73537
Day 1
13:4014:00
L115Development of a soft sensor model that takes into account the dynamic characteristics of the process and two similar qualities
(Meiji U.) *(Stu)Ohkuma Ayami, (Mitsubishi Chemical) (Cor)Yamauchi Yoshihito, (Cor)Yamada Nobuhito, (Cor)Ooyama Satoshi, (Meiji U.) (Reg)Kaneko Hiromasa
machine learning
soft sensor
time delay
SY-66260
Day 1
14:0014:20
S116Construction of a machine learning model for predicting the characteristics from the fuel cell electrode catalyst layer preparation process
(Honda R&D) *(Cor)Matsumori Hiroshi, (Cor)Maebashi Takanori, (Cor)Makino Katsunori, (Cor)Igarashi Takanori, (Cor)Inoue Ryosuke, (Cor)Tomoyasu Shinya, (Cor)Tanaka Yukihito, (Cor)Komoda Hiroaki
Fuel Cell
Electrode
Machine learning
ST-23489
Day 1
16:0016:20
H122Highly accurate prediction of transport phenomena in Si single crystal growth process using Hybrid-PINNs
(Osaka U.) *(Stu)Miyamoto Tsuyoshi, (Reg)Okano Yasunori
Physics Informed Neural Networks
Machine learning
Crystal growth
SY-56525
Day 1
16:4017:40
YB128Construction of yield prediction model in catalytic cracking of vegetable oils considering fatty acid composition
(Shinshu U.) *(Stu)Sekikawa Nozomi, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
catalytic cracking
vegetable oil
machine learning
SY-63697
Day 1
16:4017:40
YB130Construction of Prediction Model for the Yield of Suzuki-Miyaura Type Cross-Coupling Reactions Using Polymeric Ni Catalysts and Proposal of Novel Polymeric Ni Catalysts
(Meiji U.) *(Stu)Takaoka Sho, (Riken) Zhang Zhenzhong, Yamada Yoichi M. A., (Meiji U.) (Reg)Kaneko Hiromasa
Machine Learning
Polymeric Ni Catalysts
Chemical Reactions
SY-63271
Day 1
16:4017:40
YB132Application of Machine Learning in Designing the Width of Permeable Reactive Barriers Based on Reduction Mechanisms
(Korea U.) *(Stu)Ren Yangmin, (Stu)Zhou Yongyue, (Stu)Sun Shiyu, (Stu)Guo Fengshi, Cui Mingcan, Khim Jeehyeong
Machine learning
Permeable reactive barrier
LUMO
SY-63388
Day 1
16:4017:40
YB158Energy-saving design of ethylbenzene production process using machine learning and Bayesian optimization
(Meiji U.) *(Stu)Ishikawa Eri, (Reg)Kaneko Hiromasa
Machine learning
Bayesian optimization
Process design
SY-6376
Day 2
9:3011:00
YA206Constructing model for predicting pesticide activity using scaffolds by machine learning and visualizing the basis for prediction
(Meiji U.) *(Stu)Sakai Yuta, (Reg)Kaneko Hiromasa
Machine Learning
Quantitative Structure-Activity Relationship
Pesticide
SY-7886
Day 2
9:3011:00
YA214Use of Bayesian optimization in improving emulsion stability
(Kagoshima U.) *(Stu·PCEF)Sono Nao, (Meiji U.) (Reg)Kaneko Hiromasa, (NIT Miyakonojo) (Reg)Kiyoyama Shiro, (U. Miyazaki) (Reg)Shiomori Koichiro, (Kagoshima U.) (Reg)Yoshida Masahiro, (Reg)Takei Takayuki
machine learning
emulsion
surfactant
SY-78729
Day 2
9:3011:00
YA232Construction of predictive model for biodegradability as an alternative to biodegradability test using machine learning
(Meiji U.) *(Stu)Ochiai Haruki, (Reg)Kaneko Hiromasa
Machine Learning
Biodegradation
plastic
SY-7890
Day 2
9:3011:00
YA266Measurement of adsorption equilibrium of organic compounds on poly(N-isopropylacrylamide) hydrogel and prediction using machine learning
(TUAT) *(Stu)Akiyama Tomoki, (Reg)Kitajima Teiji, (Reg)Tokuyama Hideaki
poly(N-isopropylacrylamide)
adsorption
machine learning
SY-78296
Day 2
10:3012:00
YA223Research to Improving the Accuracy of Machine Learning Models for Predicting Reorganization Energy
(Meiji U.) *(Stu)Nakanishi Yamato, (Panasonic Ind.) Matsuzawa Nobuyuki N, Maeshima Hiroyuki, Ando Tatsuhito, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Organic semiconductor
Graph Convolutional Network
SY-78272
Day 2
10:3012:00
YA285Definition of the domain in chemical space that discriminates the stability of a molecular structure
(Meiji U.) *(Stu)Kosakai Soma, (Reg)Kaneko Hiromasa
Machine learning
Stability
Molecule design
SY-78194
Day 2
11:2011:40
F208Predicting kinetic constants for organic pollutant degradation in US/Oxidant systems using machine learning
(Korea U.) *(Int)Sun Shiyu, (Int)Zhou Yongyue, (Int)Ren Yangmin, (Int)Guo Fengshi, Cui Mingcan, Khim Jeehyeong
Ultrasonics
oxidants
machine learning
SY-64269
Day 2
11:4012:00
K209Estimation of lower explosive limit/limiting oxygen concentration of flammable gases and vapors using machine learning
(Mitsui Chemicals) (Cor·APCE)Yasui Katsufumi
Machine Learning
Lower Explosive Limit
Limiting Oxygen Concentration
SY-76226
Day 2
13:0013:20
L213Optimization of property prediction model in dynamic manufacturing process for carbon materials using a genetic algorithm
(Meiji U.) *(Stu)Matsubara Masayoshi, (Mitsubishi Chemical) (Cor)Sasaki Ryo, (Cor)Takahara Jun, (Cor)Moritake Shinji, (Cor)Harada Yasuyuki, (Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Genetic-algorithm-based process variables and dynamics selection
Multi-objective optimization
SY-66273
Day 2
13:0013:20
V213Development of Inspection Technique to Detect Foreign objects in Foods by using Multi-Aperture Multispectral Camera
(Hokkaido Res. Org. IRI) Honma Toshinori
multi-aperture multispectral camera
machine learning
foreign objects detection
SY-70600
Day 2
13:0013:40
R213[Review lecture] Property prediction with machine learning models and designs of molecules, materials and processes through inverse analysis of models
(Meiji U.) (Reg)Kaneko Hiromasa
Machine learning
Material design
Process design
SY-51431
Day 2
13:0014:30
YB245Machine learning model predicting properties from monomer structures of alkyl sulfonated polyimides
(Meiji U.) *(Stu)Ando Ruka, (JAIST) Aoki Kentaro, Nagao Yuki, (Meiji U.) (Reg)Kaneko Hiromasa
alkyl sulfonated polyimide
machine learning
fuel cell
SY-7582
Day 2
13:0014:30
YB249Prediction of cell characteristics of PEFC by machine learning
(Kyushu U.) *(Stu)Kondo A., (Stu)Saito Y., Permatasari A., (Stu)Nakano K., (Reg)Yano T., (Reg)Inoue G.
Fuel cell
Catalyst layer
Machine learning
SY-751021
Day 2
13:4014:00
E215Analysis of anion selectivity in Mg-based Layered Double Hydroxide using a Universal Neural Network Potential
(Shinshu U. RISM) *(Reg)Aspera Susan Menez, Chen Yingjie, Nguyen Tien Quang, (Reg)Koyama Michihisa
machine learning
layered double hydroxide (LDH)
anion selectivity
ST-22732
Day 2
13:4014:00
R215Searching for the optimal machine learning prediction model in carbon dioxide expansion fluid density
(Tokyo U. Sci.) *(Stu)Imagaki Takaya, (Reg)Matsukawa Hiroaki, (Reg)Shono Atsushi, (Universiti Teknologi Malaysia) (Reg)Tsuji Tomoya, (Tokyo U. Sci.) (Reg)Otake Katsuto
machine learning
carbon dioxide
density
SY-51403
Day 2
14:3016:00
YB206Visualization of Energy Consumption Behavior Using Clustering-Based SHAP Value Analysis
(Tokyo Tech) *(Stu)Kagawa Tatsuya, Iijima Taiki, (Stu)Lee Hyojae, (Stu)Wang Shuai, (Reg)Kameda Keisuke, (Reg)Manzhos Sergei, (Reg)Ihara Manabu
energy system
machine learning
big data
SY-75704
Day 2
14:4015:00
E218[The Outstanding Paper Award] Optimization of metal nanoparticle synthesis conditions using automated flow system and machine learning
(AIST) *(Reg)Ono Takumi, (Reg)Takebayashi Yoshihiro, (ADMAT) Kashiwagi Tsuneo, (AIST) (Reg)Sue Kiwamu
Nanoparticle
Microreactor
Machine Learning
ST-22448
Day 2
15:0015:20
L219Molecular design with direct inverse analysis of autoencoder-based QSAR/QSPR model
(Meiji U.) *(Stu)Shino Yuto, (Reg)Kaneko Hiromasa
Machine learning
Inverse analysis
Molecular design
SY-66140
Day 2
15:4016:00
E221Automated reaction process analysis using data-driven approaches
(U. Tokyo/Auxilart) *(Reg)Kim Junu, (Riken) Sakata Itsushi, (Independent Researcher) Yamatsuta Eitaro, (U. Tokyo) (Reg)Sugiyama Hirokazu
Dynamic mode decomposition
Chemical reaction
Machine learning
ST-22969
Day 3
8:409:00
H300Optimization of flow system reaction with immobilized polymer catalysts using Bayesian optimization
(Kyushu U.) *(Stu)Zhou Xincheng, (Reg·PCEF)Matsumoto Hikaru, (Reg)Nagao Masanori, (Reg)Miura Yoshiko
Polymer immobilized Pd catalyst
Machine learning
Process optimization
SY-65552
Day 3
9:009:20
J301Controlling particle size of polyimide microparticles and modeling particle size variation using a hierarchical Bayesian approach
(ORIST) *(Reg)Ehiro T., Nakahashi A.
polyimide
machine learning
hierarchical Bayesian model
SY-7927
Day 3
9:209:40
W302Nanomolar Scale Peptide Identification on Polydiacetylene Sensors by Hyperspectral Imaging and Machine Learning
(U. Tokyo IIS) *(Stu)Chen Jiali, (Reg)Sugihara Kaori
Polydiacetytlene
Hyperspectral imaging
Machine learning
SY-72542
Day 3
9:4010:00
E303Control of foam on white water and improvement of operational efficiency by modeling a soft sensor
(RENGO) *(Reg)Okura Y., Inui T., Okahara K.
soft sensor
machine learning
factory automation
ST-2295
Day 3
10:0010:40
Q304[Review lecture] Future of the reactions in supercritical water and high-temperature water -Plastics development based on recycling & reaction prediction using natural language processing-
(Shinshu U.) (Reg)Osada Mitsumasa
Plastic recycling
Machine learning
Hydrothermal
SY-731044
Day 3
10:0011:00
YA351Molecular design of novelty polymer membranes using Hierarchical Variational Autoencoder
(Kogakuin U.) *(Stu)Miyatake Koshiro, (Reg)Miyagawa Masaya, (Reg)Takaba Hiromitsu
Gas separation
Machine learning
Polymer membrane
SY-57859
Day 3
10:2010:40
W305Machine learning-based cancer diagnosis using size-dependent blood residence time of nanoparticles
(U. Tokyo) *(Reg)Nakamura Noriko, Tokumaru Mikito, (Reg)Ohta Seiichi
machine learning
cancer diagnosis
blood residence time
SY-72624
Day 3
10:4011:20
E306[Invited lecture] Autonomous Materials Search
(NIMS) Iwasaki Yuma
Machine learning
Autonomous
Active learning
ST-22145
Day 3
11:2011:40
W308[Featured presentation] Predictive Modeling of Cell Viability in Extrusion-Based 3D Bioprinting using Machine Learning
(Osaka U.) *(Stu)Zhang Colin, (Reg)Okano Yasunori, (Reg)Sakai Shinji
Extrusion-based 3D bioprinting
Cell viability
Machine learning
SY-72394
Day 3
13:3016:30
Z309[Requested talk] Computational materials design of ternary alloys by Korringa-Kohn-Rostoker coherent potential approximation method and machine learning
(Zeon) *(Cor)Pham Thi Dung, (Cor)Segi Takashi, (Cor)Ono Yuki
first-principles study
machine learning
ternary alloys
HQ-15516

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 55th Autumn Meeting (Sapporo, 2024)


© 2024 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 55th Autumn Meeting
E-mail: inquiry-55fwww4.scej.org